UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
Mol Psychiatry. 2022 Jan;27(1):403-421. doi: 10.1038/s41380-021-01136-8. Epub 2021 May 14.
Adult hippocampal neurogenesis (AHN) represents a remarkable form of neuroplasticity that has increasingly been linked to the stress response in recent years. However, the hippocampus does not itself support the expression of the different dimensions of the stress response. Moreover, the main hippocampal functions are essentially preserved under AHN depletion and adult-born immature neurons (abGNs) have no extrahippocampal projections, which questions the mechanisms by which abGNs influence functions supported by brain areas far from the hippocampus. Within this framework, we propose that through its computational influences AHN is pivotal in shaping adaption to environmental demands, underlying its role in stress response. The hippocampus with its high input convergence and output divergence represents a computational hub, ideally positioned in the brain (1) to detect cues and contexts linked to past, current and predicted stressful experiences, and (2) to supervise the expression of the stress response at the cognitive, affective, behavioral, and physiological levels. AHN appears to bias hippocampal computations toward enhanced conjunctive encoding and pattern separation, promoting contextual discrimination and cognitive flexibility, reducing proactive interference and generalization of stressful experiences to safe contexts. These effects result in gating downstream brain areas with more accurate and contextualized information, enabling the different dimensions of the stress response to be more appropriately set with specific contexts. Here, we first provide an integrative perspective of the functional involvement of AHN in the hippocampus and a phenomenological overview of the stress response. We then examine the mechanistic underpinning of the role of AHN in the stress response and describe its potential implications in the different dimensions accompanying this response.
成人海马神经发生 (AHN) 代表了一种显著的神经可塑性形式,近年来越来越多地与应激反应相关。然而,海马本身并不支持应激反应的不同维度的表达。此外,主要的海马功能在 AHN 耗竭和成年新生不成熟神经元 (abGN) 存在的情况下基本得到保留,而 abGN 没有额外的海马投射,这就质疑了 abGN 影响远离海马的脑区所支持的功能的机制。在这个框架内,我们提出,通过其计算影响,AHN 是塑造适应环境需求的关键,这是其在应激反应中的作用的基础。海马具有高输入汇聚和输出发散的特点,代表了一个计算中心,理想地位于大脑中:(1) 检测与过去、当前和预测的应激体验相关的线索和背景;(2) 监督认知、情感、行为和生理水平上应激反应的表达。AHN 似乎使海马计算偏向于增强的联合编码和模式分离,促进上下文区分和认知灵活性,减少应激体验的主动干扰和向安全上下文的泛化。这些效应导致更准确和上下文化的信息传递到下游脑区,使应激反应的不同维度能够更恰当地与特定的背景相适应。在这里,我们首先提供了 AHN 在海马中的功能参与的综合观点,以及应激反应的现象学概述。然后,我们检查了 AHN 在应激反应中的作用的机制基础,并描述了其在伴随这种反应的不同维度中的潜在影响。