Suppr超能文献

基于 ROI 的医学图像水印技术,用于准确的篡改检测、定位和恢复。

ROI-based medical image watermarking for accurate tamper detection, localisation and recovery.

机构信息

School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur, 613 401, India.

出版信息

Med Biol Eng Comput. 2021 Jun;59(6):1355-1372. doi: 10.1007/s11517-021-02374-2. Epub 2021 May 14.

Abstract

Smart healthcare systems play a vital role in the current era of Internet of Things (IoT) and Cyber-Physical Systems (CPS); i.e. Industry 4.0. Medical data security has become the integral part of smart hospital applications to ensure data privacy and patient data security. Usually, patient medical reports and diagnostic images are transferred to the specialist physician in other hospitals for effective diagnostics. Therefore, the transmission of medical data over the internet has attained significant interest among many researchers. The three main challenges associated with the e-healthcare systems are the following: (1) ensuring authentication of medical information; (2) transmission of medical image and patient health record (PHR) should not cause data mismatch/detachment; and (3) medical image should not be modified accidentally or intentionally as they are transmitted over the insecure medium. Thus, it is highly essential to ensure the integrity of the medical image, especially the region of interest (ROI) before taking any diagnostic decisions. Watermarking is a well-known technique used to overcome these challenges. The current research work has developed a watermarking algorithm to ensure integrity and authentication of the medical data and image. In this paper, a novel watermarking algorithm is designed based on Integer Wavelet Transform (IWT), combined chaotic map, recovery bit generation and SHA-256 to address the objective as mentioned earlier. The paper's significant contribution is divided into four phases, namely, watermark generation and data embedding phase, authentication phase, tamper detection phase and localisation and lossless recovery phase. Experiments are carried out to prove that the developed IWT-based data embedding scheme offers high robustness to the data embedded in region of non-interest (RONI), detects and localises the tampered blocks inside ROI with 100% accuracy and recovers the tampered segments of ROI with zero MSE. Further, a comparison is made with the state-of-art schemes to verify the sternness of the developed system.

摘要

智能医疗系统在物联网 (IoT) 和 信息物理系统 (CPS) 时代发挥着至关重要的作用,即工业 4.0。医疗数据安全已成为智能医院应用的组成部分,以确保数据隐私和患者数据安全。通常,患者的医疗报告和诊断图像会传输给其他医院的专家医生进行有效诊断。因此,医疗数据在互联网上的传输引起了许多研究人员的关注。电子医疗保健系统面临的三个主要挑战如下:(1)确保医疗信息的认证;(2)在不导致数据不匹配/分离的情况下传输医疗图像和患者健康记录 (PHR);(3)在不安全的媒介上传输时,医疗图像不应意外或故意被修改。因此,确保医疗图像的完整性,尤其是感兴趣区域(ROI)的完整性,在做出任何诊断决策之前是非常重要的。数字水印是一种用于克服这些挑战的知名技术。当前的研究工作开发了一种数字水印算法,以确保医疗数据和图像的完整性和认证。本文设计了一种基于整数小波变换(IWT)的新型水印算法,结合混沌映射、恢复位生成和 SHA-256 来解决前文提到的目标。本文的主要贡献分为四个阶段,即水印生成和数据嵌入阶段、认证阶段、篡改检测阶段和定位及无损恢复阶段。实验证明,所开发的基于 IWT 的数据嵌入方案对 RONI 中嵌入的数据具有较高的鲁棒性,可 100%准确地检测和定位 ROI 内的篡改块,并以零均方误差恢复 ROI 的篡改片段。此外,与最先进的方案进行了比较,以验证所开发系统的严格性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验