Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, United Kingdom.
Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom.
Magn Reson Med. 2021 Oct;86(4):2122-2136. doi: 10.1002/mrm.28842. Epub 2021 May 15.
A DCE-MRI technique that can provide both high spatiotemporal resolution and whole-brain coverage for quantitative microvascular analysis is highly desirable but currently challenging to achieve. In this study, we sought to develop and validate a novel dual-temporal resolution (DTR) DCE-MRI-based methodology for deriving accurate, whole-brain high-spatial resolution microvascular parameters.
Dual injection DTR DCE-MRI was performed and composite high-temporal and high-spatial resolution tissue gadolinium-based-contrast agent (GBCA) concentration curves were constructed. The high-temporal but low-spatial resolution first-pass GBCA concentration curves were then reconstructed pixel-by-pixel to higher spatial resolution using a process we call LEGATOS. The accuracy of kinetic parameters (K , v , and v ) derived using LEGATOS was evaluated through simulations and in vivo studies in 17 patients with vestibular schwannoma (VS) and 13 patients with glioblastoma (GBM). Tissue from 15 tumors (VS) was examined with markers for microvessels (CD31) and cell density (hematoxylin and eosin [H&E]).
LEGATOS derived parameter maps offered superior spatial resolution and improved parameter accuracy compared to the use of high-temporal resolution data alone, provided superior discrimination of plasma volume and vascular leakage effects compared to other high-spatial resolution approaches, and correlated with tissue markers of vascularity (P ≤ 0.003) and cell density (P ≤ 0.006).
The LEGATOS method can be used to generate accurate, high-spatial resolution microvascular parameter estimates from DCE-MRI.
一种能够提供高时空分辨率和全脑覆盖的 DCE-MRI 技术,用于进行定量微血管分析,这是非常理想的,但目前难以实现。本研究旨在开发和验证一种新的双时间分辨率(DTR)DCE-MRI 方法,用于推导出准确的、全脑高空间分辨率微血管参数。
进行双注射 DTR DCE-MRI,并构建复合高时间和高空间分辨率组织钆基对比剂(GBCA)浓度曲线。然后,使用我们称为 LEGATOS 的方法,逐像素重建高时间但低空间分辨率的首过 GBCA 浓度曲线,以获得更高的空间分辨率。通过模拟和 17 例前庭神经鞘瘤(VS)和 13 例胶质母细胞瘤(GBM)患者的体内研究,评估使用 LEGATOS 得出的动力学参数(K、v 和 v)的准确性。使用 CD31 等微血管标志物和苏木精和伊红(H&E)等细胞密度标志物检查了 15 个肿瘤(VS)的组织。
与单独使用高时间分辨率数据相比,LEGATOS 衍生的参数图提供了更高的空间分辨率和更高的参数准确性,与其他高空间分辨率方法相比,提供了更好的血浆体积和血管渗漏效果的区分能力,并与血管生成(P ≤ 0.003)和细胞密度(P ≤ 0.006)的组织标志物相关。
LEGATOS 方法可用于从 DCE-MRI 生成准确的、高空间分辨率的微血管参数估计值。