Clinical Pharmacology and Pharmacometrics, Biogen Inc., 225 Binney Street, Cambridge, MA, 02142, USA.
PK/Clinical Pharmacology, Ionis Pharmaceuticals, Carlsbad, CA, USA.
J Pharmacokinet Pharmacodyn. 2021 Oct;48(5):639-654. doi: 10.1007/s10928-021-09761-0. Epub 2021 May 15.
Antisense oligonucleotides (ASOs) are promising therapeutic agents for a variety of neurodegenerative and neuromuscular disorders, e.g., Alzheimer's, Parkinson's and Huntington's diseases, spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS), caused by genetic abnormalities or increased protein accumulation. The blood-brain barrier (BBB) represents a challenge to the delivery of systemically administered ASOs to the relevant sites of action within the central nervous system (CNS). Intrathecal (IT) delivery, in which drugs are administered directly into the cerebrospinal fluid (CSF) space, enables to bypass the BBB. Several IT-administered ASO therapeutics have already demonstrated clinical effect, e.g., nusinersen (SMA) and tofersen (ALS). Due to novelty of IT dosing for ASOs, very limited pharmacokinetic (PK) data is available and only a few modeling reports have been generated. The objective of this work is to advance fundamental understanding of whole-body distribution of IT-administered ASOs. We propose a physiologically-based pharmacokinetic modeling approach to describe the distribution along the neuroaxis based on PK data from non-human primate (NHP) studies. We aim to understand the key processes that drive and limit ASO access to the CNS target tissues. To elucidate the trade-off between parameter identifiability and physiological plausibility of the model, several alternative model structures were chosen and fitted to the NHP data. The model analysis of the NHP data led to important qualitative conclusions that can inform projection to human. In particular, the model predicts that the maximum total exposure in the CNS tissues, including the spinal cord and brain, is achieved within two days after the IT injection, and the maximum amount absorbed by the CNS tissues is about 4% of the administered IT dose. This amount greatly exceeds the CNS exposures delivered by systemic administration of ASOs. Clearance from the CNS is controlled by the rate of transfer from the CNS tissues back to CSF, whereas ASO degradation in tissues is very slow and can be neglected. The model also describes local differences in ASO concentration emerging along the spinal CSF canal. These local concentrations need to be taken into account when scaling the NHP model to human: due to the lengthier human spinal column, inhomogeneity along the spinal CSF may cause even higher gradients and delays potentially limiting ASO access to target CNS tissues.
反义寡核苷酸 (ASO) 是治疗多种神经退行性和神经肌肉疾病的有前途的治疗剂,例如阿尔茨海默病、帕金森病和亨廷顿病、脊髓性肌萎缩症 (SMA) 和肌萎缩侧索硬化症 (ALS),这些疾病是由遗传异常或蛋白质积累增加引起的。血脑屏障 (BBB) 是将全身给予的 ASO 递送到中枢神经系统 (CNS) 内相关作用部位的挑战。鞘内 (IT) 给药,其中药物直接给予脑脊液 (CSF) 空间,能够绕过 BBB。几种 IT 给予的 ASO 治疗剂已经证明了临床效果,例如 nusinersen (SMA) 和 tofersen (ALS)。由于 IT 给予 ASO 的剂量新颖,因此可用的药代动力学 (PK) 数据非常有限,并且仅生成了少数建模报告。这项工作的目的是深入了解 IT 给予的 ASO 的全身分布。我们提出了一种基于生理学的药代动力学建模方法,根据非人类灵长类动物 (NHP) 研究的 PK 数据来描述沿神经轴的分布。我们旨在了解驱动和限制 ASO 进入 CNS 靶组织的关键过程。为了阐明模型的参数可识别性与生理学合理性之间的权衡,选择了几种替代模型结构并拟合到 NHP 数据中。对 NHP 数据的模型分析得出了重要的定性结论,可以为向人类的预测提供信息。特别是,该模型预测,在 IT 注射后两天内,CNS 组织(包括脊髓和大脑)中的最大总暴露量达到,并且被 CNS 组织吸收的最大量约为给予的 IT 剂量的 4%。这一数量大大超过了通过全身给予 ASO 递送的 CNS 暴露量。从 CNS 的清除受从 CNS 组织返回 CSF 的转移率控制,而组织中的 ASO 降解非常缓慢,可以忽略不计。该模型还描述了沿脊髓 CSF 管出现的 ASO 浓度的局部差异。在将 NHP 模型缩放至人类时,需要考虑这些局部浓度:由于人类的脊柱较长,沿脊髓 CSF 的不均匀性可能导致更高的梯度和延迟,从而潜在地限制 ASO 进入靶 CNS 组织。
J Pharmacokinet Pharmacodyn. 2021-10
CPT Pharmacometrics Syst Pharmacol. 2018-8-16
Nucleic Acids Res. 2023-8-11
Drugs Today (Barc). 2017-6
J Pharmacokinet Pharmacodyn. 2025-6-12
Curr Res Pharmacol Drug Discov. 2025-4-17
Mol Ther Nucleic Acids. 2025-3-5
Mol Ther Nucleic Acids. 2024-9-16
Mater Today Bio. 2024-5-29
Biomedicines. 2023-10-8