通过剪接体抑制捕获并维持小鼠全能干细胞。
Mouse totipotent stem cells captured and maintained through spliceosomal repression.
作者信息
Shen Hui, Yang Min, Li Shiyu, Zhang Jing, Peng Bing, Wang Chunhui, Chang Zai, Ong Jennie, Du Peng
机构信息
MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China.
出版信息
Cell. 2021 May 27;184(11):2843-2859.e20. doi: 10.1016/j.cell.2021.04.020. Epub 2021 May 14.
Since establishment of the first embryonic stem cells (ESCs), in vitro culture of totipotent cells functionally and molecularly comparable with in vivo blastomeres with embryonic and extraembryonic developmental potential has been a challenge. Here we report that spliceosomal repression in mouse ESCs drives a pluripotent-to-totipotent state transition. Using the splicing inhibitor pladienolide B, we achieve stable in vitro culture of totipotent ESCs comparable at molecular levels with 2- and 4-cell blastomeres, which we call totipotent blastomere-like cells (TBLCs). Mouse chimeric assays combined with single-cell RNA sequencing (scRNA-seq) demonstrate that TBLCs have a robust bidirectional developmental capability to generate multiple embryonic and extraembryonic cell lineages. Mechanically, spliceosomal repression causes widespread splicing inhibition of pluripotent genes, whereas totipotent genes, which contain few short introns, are efficiently spliced and transcriptionally activated. Our study provides a means for capturing and maintaining totipotent stem cells.
自从首个胚胎干细胞(ESC)建立以来,在功能和分子层面上,对具有胚胎和胚外发育潜能、与体内卵裂球相当的全能细胞进行体外培养一直是一项挑战。在此,我们报告小鼠胚胎干细胞中的剪接体抑制驱动了多能态到全能态的转变。使用剪接抑制剂普拉地诺醇B,我们实现了全能胚胎干细胞的稳定体外培养,其在分子水平上与二细胞和四细胞期的卵裂球相当,我们将其称为全能卵裂球样细胞(TBLC)。小鼠嵌合试验结合单细胞RNA测序(scRNA-seq)表明,TBLC具有强大的双向发育能力,能够产生多种胚胎和胚外细胞谱系。从机制上讲,剪接体抑制导致多能基因的广泛剪接抑制,而内含子较少的全能基因则能有效剪接并转录激活。我们的研究为捕获和维持全能干细胞提供了一种方法。