Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata) RA1900, La Plata, Argentina.
ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain.
Food Res Int. 2021 May;143:110235. doi: 10.1016/j.foodres.2021.110235. Epub 2021 Feb 26.
Dehydration of lactic acid bacteria for technological purposes conducts to multilevel damage of bacterial cells. The goal of this work was to determine at which molecular level fructose-oligosaccharides (FOS) and sucrose protect Lactobacillus delbrueckii subsp. bulgaricus CIDCA 333 during the vacuum-drying process. To achieve this aim, the cultivability and metabolic activity of vacuum-dried bacteria were firstly determined (plate counting and absorbance kinetics). Then, the membrane integrity and fluidity were assessed using propidium iodide and Laurdan probes (general polarization -GP-), respectively. Finally, bacterial structural alterations were determined using high throughput methods (fluorescence confocal microscopy and Raman spectroscopy coupled to Multivariate Curve Resolution analysis -MCR-). The vacuum-drying process directly affected the microorganism's cultivability and membrane integrity. Non-dehydrated cells and sugar protected bacteria (both with FOS or sucrose) presented high GP values typical from the gel state, as well as phospholipids microdomains laterally organized along the cytoplasmic membrane. On the contrary, bacteria dehydrated without protectants presented low GP values and greater water penetration, associated with membrane destabilization. Raman spectroscopy of vacuum-dried cells revealed DNA conformational changes, B-DNA conformations being associated to non-dehydrated or sugar protected bacteria, and A-DNA conformations being higher in bacteria vacuum-dried without protectants. These results support the role of FOS and sucrose as protective compounds, not only acting at the membrane organizational level but also preventing conformational alterations of intracellular structures, like DNA.
为了技术目的而对乳酸菌进行脱水处理会导致细菌细胞受到多层次的损伤。本工作的目的是确定在真空干燥过程中,果寡糖(FOS)和蔗糖在哪个分子水平上保护保加利亚乳杆菌亚种 CIDCA 333。为了实现这一目标,首先确定了真空干燥细菌的可培养性和代谢活性(平板计数和吸光度动力学)。然后,使用碘化丙啶和 Laurdan 探针(总偏振 -GP-)分别评估膜的完整性和流动性。最后,使用高通量方法(荧光共聚焦显微镜和拉曼光谱结合多元曲线分辨分析 -MCR-)确定细菌的结构变化。真空干燥过程直接影响微生物的可培养性和膜的完整性。未脱水的细胞和添加了糖的保护细菌(添加 FOS 或蔗糖)的 GP 值较高,呈现凝胶态的典型特征,并且质膜上侧向排列着磷脂微区。相反,没有保护剂的脱水细菌的 GP 值较低,水的渗透率更高,这与膜的不稳定性有关。真空干燥细胞的拉曼光谱显示 DNA 构象发生变化,B-DNA 构象与未脱水或添加糖保护的细菌有关,而在没有保护剂的脱水细菌中,A-DNA 构象更高。这些结果支持 FOS 和蔗糖作为保护化合物的作用,它们不仅在膜组织水平上发挥作用,而且还可以防止细胞内结构(如 DNA)的构象改变。