Faculty of Medicine, Manipal University College Malaysia, Jalan Padang Jambu, Bukit Baru, 75150 Melaka, Malaysia; Immunology and Microbiology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Midnapore 721102, West Bengal, India.
University of the Free State, Bloemfontein 9300, South Africa.
Cytokine. 2021 Aug;144:155555. doi: 10.1016/j.cyto.2021.155555. Epub 2021 May 13.
Emergence and spread of resistant parasites to the newest chemotherapeutic anti-malarial agents are the biggest challenges against malaria control programs. Therefore, developing a novel effective treatment to reduce the overgrowing burden of multidrug resistant malaria is a pressing need. Herein, we have developed a biocompatible and biodegradable, non-toxic chitosan-tripolyphosphate-chloroquine (CS-TPP CQ) nanoparticle. CS-TPP CQ nanoparticles effectively kill the parasite through redox generation and induction of the pro- and anti-inflammatory cytokines in both sensitive and resistant parasite in vitro. The in vitro observations showed a strong inhibitory effect (p < 0.01) on pro-inflammatory cytokines more specifically on TNF-α and IFN-γ whereas CS-TPP CQ nanoparticles significantly elevated the anti-inflammatory cytokines- IL-10 and TGF-β. In addition, CS-TPP CQ nanoparticle significantly increased NO generation (p < 0.01) and altered the GSH/GSSG ratio 72 h after parasite co-culture with peripheral blood mononuclear cells culminating in the free radical induced parasite killing. CS-TPP CQ nanoparticle had an effective dose of 100 ng/ml against CQ-sensitive parasite lines (p < 0.001) whereas effective dose against CQ-resistant parasite line was 200 ng/ml CS-TPP CQ with an effective duration of 72 h (p < 0.001). Our studies suggest that CS-TPP CQ nanoparticle has a potential to modulate the pro- and anti-inflammatory responses, and to trigger the redox-mediated parasite killing. It can be a novel nano-based futuristic approach towards malaria control.
抗疟新药的耐药寄生虫的出现和传播是疟疾控制项目面临的最大挑战。因此,开发一种新的有效治疗方法来减轻耐药性疟疾日益增长的负担是当务之急。在此,我们开发了一种生物相容性、可生物降解、无毒的壳聚糖-三聚磷酸钠-氯喹(CS-TPP CQ)纳米颗粒。CS-TPP CQ 纳米颗粒通过氧化还原生成和诱导敏感和耐药寄生虫中的促炎和抗炎细胞因子,有效地杀死寄生虫。体外观察表明,CS-TPP CQ 纳米颗粒对促炎细胞因子(特别是 TNF-α和 IFN-γ)具有很强的抑制作用(p<0.01),而对抗炎细胞因子-IL-10 和 TGF-β则有显著的升高作用。此外,CS-TPP CQ 纳米颗粒在寄生虫与外周血单个核细胞共培养 72 小时后显著增加了 NO 的产生(p<0.01),并改变了 GSH/GSSG 比值,导致自由基诱导寄生虫死亡。CS-TPP CQ 纳米颗粒对 CQ 敏感的寄生虫系的有效剂量为 100ng/ml(p<0.001),而对 CQ 耐药的寄生虫系的有效剂量为 200ng/ml CS-TPP CQ,有效持续时间为 72 小时(p<0.001)。我们的研究表明,CS-TPP CQ 纳米颗粒具有调节促炎和抗炎反应以及触发氧化还原介导的寄生虫杀伤的潜力。它可能是一种新的基于纳米技术的未来疟疾控制方法。