University of Melbourne, School of BioSciences, Parkville, VIC 3010, Australia; University of Hawai'i at Mānoa, Department of Botany, Honolulu, Hawai'i 96822, USA.
University of Zurich, Department of Plant and Microbial Biology, Botanical Museum, Zollikerstrasse 107, 8008 Zurich, Switzerland; University of Potsdam, Institute of Biochemistry and Biology, Biodiversity Research/Systematic Botany, Maulbeerallee 2a, 14469 Potsdam, Germany.
Mol Phylogenet Evol. 2021 Oct;163:107203. doi: 10.1016/j.ympev.2021.107203. Epub 2021 May 14.
The astelioid families (Asteliaceae, Blandfordiaceae, Boryaceae, Hypoxidaceae, and Lanariaceae) have centers of diversity in Australasia and temperate Africa, with secondary centers of diversity in Afromontane Africa, Asia, and Pacific Islands. The global distribution of these families makes this an excellent lineage to test if current distribution patterns are the result of vicariance or long-distance dispersal and to evaluate the roles of Tertiary climatic and geological drivers in lineage diversification. Sequence data were generated from five chloroplast regions (petL-psbE, rbcL, rps16-trnK, trnL-trnLF, trnS-trnSG) for 104 ingroup species sampled across global diversity. The astelioid phylogeny was inferred using maximum parsimony, maximum likelihood, and Bayesian inference methods. Divergence dates were estimated with a relaxed clock applied in BEAST. Ancestral ranges were reconstructed in the R package 'BioGeoBEARS' applying the corrected Akaike information criterion to test for the best-fit biogeographic model. Diversification rates were estimated in Bayesian Analysis of Macroevolutionary Mixtures (BAMM). Astelioid relationships were inferred as Boryaceae(Blandfordiaceae(Asteliaceae(Hypoxidaceae plus Lanariaceae))). The crown astelioid node was dated to the Late Cretaceous (75.2 million years; 95% highest posterior density interval 61.0-90.0 million years) and an Antarctic-Australasian origin was inferred. Astelioid speciation events have not been shaped by Gondwanan vicariance. Rather long-distance dispersal since the Eocene is inferred to account for current distributions. Crown Asteliaceae and Boryaceae have Australian ancestral ranges and diversified since the Eocene. In Hypoxidaceae, Empodium, Hypoxis, and Pauridia have African ancestral ranges, while Curculigo and Molineria have an Asian ancestral range. Diversification of Pauridia and the Curculigo clade occurred steadily, while diversification of Astelia and Hypoxis was punctuated over time. Diversification of Hypoxis and Astelia coincided temporally with the expansion of the habitat types occupied by extant taxa, e.g., grassland habitat in Africa during the Late Miocene and alpine habitat in New Zealand during the Pliocene, respectively.
该 Asterioid 科( Asteriaceae、Blandfordiaceae、Boryaceae、Hypoxidaceae 和 Lanariaceae)的多样性中心位于澳大拉西亚和温带非洲,次要多样性中心位于非洲阿特拉斯山脉、亚洲和太平洋岛屿。这些家族的全球分布使得该谱系成为一个极好的测试对象,可以检验当前的分布模式是由隔离或远距离扩散形成的,并评估第三纪气候和地质驱动因素在谱系多样化中的作用。从全球多样性中采样的 104 种内种生成了五个叶绿体区域( petL-psbE、rbcL、rps16-trnK、trnL-trnLF、trnS-trnSG)的序列数据。使用最大简约法、最大似然法和贝叶斯推断法推断 Asterioid 系统发育。使用在 BEAST 中应用的松弛时钟估计分歧时间。在 R 包“BioGeoBEARS”中重建祖先范围,应用校正后的 Akaike 信息准则来测试最佳生物地理模型。在贝叶斯分析宏进化混合物(BAMM)中估计多样化率。推断 Asterioid 关系为 Boryaceae(Blandfordiaceae(Asteriaceae(Hypoxidaceae + Lanariaceae)))。冠 Asterioid 节点的日期为白垩纪晚期(7520 万年;95%最高后验密度间隔为 610-900 万年),并推断出南极-澳大利亚起源。 Asterioid 物种形成事件不是冈瓦纳隔离造成的。相反,自始新世以来的远距离扩散被推断为目前分布的原因。冠 Asteriaceae 和 Boryaceae 具有澳大利亚祖先范围,并自始新世以来多样化。在 Hypoxidaceae 中, Empodium、Hypoxis 和 Pauridia 具有非洲祖先范围,而 Curculigo 和 Molineria 具有亚洲祖先范围。Pauridia 和 Curculigo 分支的多样化是稳定的,而 Astelia 和 Hypoxis 的多样化是随着时间的推移而间断的。Hypoxis 和 Astelia 的多样化与现存分类群所占据的栖息地类型的扩张时间一致,例如,非洲晚中新世的草原栖息地和新西兰上新世的高山栖息地。