Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay; Institut Pasteur de Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay.
Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay; Institut Pasteur de Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay.
Cells Dev. 2021 Jun;166:203677. doi: 10.1016/j.cdev.2021.203677. Epub 2021 Apr 10.
Slit-Robo signaling has been implicated in regulating several steps of retinal ganglion cell axon guidance, with a central role assigned to Slit2. We report here the phenotypical characterization of a CRISPR-Cas9-generated zebrafish null mutant for this gene, along with a detailed analysis of its expression pattern by WM-FISH. All evident defects in the optic axons in slit2-/- mutants were detected outside the retina, coincident with the major sites of expression at the ventral forebrain, around the developing optic nerve and anterior to the optic chiasm/proximal tract. Anterograde axon tracing experiments in zygotic and maternal-zygotic mutants, as well as morphants, showed the occurrence of axon sorting defects, which appeared mild at the optic nerve level, but more severe in the optic chiasm and the proximal tract. A remarkable sorting defect was the usual splitting of one of the optic nerves in two branches that surrounded the contralateral nerve at the chiasm. Although all axons eventually crossed the midline, the retinotopic order appeared lost at the proximal optic tract, to eventually correct distally. Time-lapse analysis demonstrated the sporadic occurrence of axon misrouting at the chiasm level, which could be responsible for the sorting errors. Our results support previous evidence of a channeling role for Slit molecules in retinal ganglion cell axons at the optic nerve, in addition to a function in the segregation of axons coming from each nerve and from different retinal regions at the medio-ventral area of the forebrain.
缝隙-Robo 信号在调节视网膜神经节细胞轴突导向的几个步骤中起作用,其中缝隙 2 起核心作用。我们在这里报告了一种 CRISPR-Cas9 生成的斑马鱼基因缺失突变体的表型特征,以及通过 WM-FISH 对其表达模式的详细分析。在 slit2-/-突变体中,所有明显的视神经缺陷都在视网膜外检测到,与在腹侧前脑、发育中的视神经周围和视交叉/近端束前方的主要表达部位一致。在合子和母合子突变体以及形态发生体中的顺行轴突追踪实验表明,存在轴突分拣缺陷,在视神经水平上表现为轻度缺陷,但在视交叉和近端束中更为严重。一个显著的分拣缺陷是视神经通常在视交叉处分为两支,两支围绕对侧神经。尽管所有轴突最终都穿过中线,但在近端视束处的视网膜拓扑顺序似乎丢失,最终在远端恢复正常。延时分析表明,在视交叉水平上轴突错误布线的偶发发生,这可能是分拣错误的原因。我们的结果支持了缝隙分子在视神经中对视网膜神经节细胞轴突进行导向的通道作用的先前证据,此外还支持了来自每个神经和来自前脑中腹侧区域不同视网膜区域的轴突分离的功能。