Suppr超能文献

基于时空整合和深度循环神经网络的连续眼动视野计计算方法

Computational Methods for Continuous Eye-Tracking Perimetry Based on Spatio-Temporal Integration and a Deep Recurrent Neural Network.

作者信息

Grillini Alessandro, Hernández-García Alex, Renken Remco J, Demaria Giorgia, Cornelissen Frans W

机构信息

Laboratory for Experimental Ophthalmology, University Medical Center Groningen, Groningen, Netherlands.

Osnabrück University, Osnabrück, Germany.

出版信息

Front Neurosci. 2021 Apr 29;15:650540. doi: 10.3389/fnins.2021.650540. eCollection 2021.

Abstract

The measurement of retinal sensitivity at different visual field locations-perimetry-is a fundamental procedure in ophthalmology. The most common technique for this scope, the Standard Automated Perimetry, suffers from several issues that make it less suitable to test specific clinical populations: it can be tedious, it requires motor manual feedback, and requires from the patient high levels of compliance. Previous studies attempted to create user-friendlier alternatives to Standard Automated Perimetry by employing eye movements reaction times as a substitute for manual responses while keeping the fixed-grid stimuli presentation typical of Standard Automated Perimetry. This approach, however, does not take advantage of the high spatial and temporal resolution enabled by the use of eye-tracking. In this study, we introduce a novel eye-tracking method to perform high-resolution perimetry. This method is based on the continuous gaze-tracking of a stimulus moving along a pseudo-random walk interleaved with saccadic jumps. We then propose two computational methods to obtain visual field maps from the continuous gaze-tracking data: the first is based on the spatio-temporal integration of ocular positional deviations using the threshold free cluster enhancement (TFCE) algorithm; the second is based on using simulated visual field defects to train a deep recurrent neural network (RNN). These two methods have complementary qualities: the TFCE is neurophysiologically plausible and its output significantly correlates with Standard Automated Perimetry performed with the Humphrey Field Analyzer, while the RNN accuracy significantly outperformed the TFCE in reconstructing the simulated scotomas but did not translate as well to the clinical data from glaucoma patients. While both of these methods require further optimization, they show the potential for a more patient-friendly alternative to Standard Automated Perimetry.

摘要

在不同视野位置测量视网膜敏感度——视野检查——是眼科的一项基本程序。针对该领域最常用的技术,即标准自动视野检查,存在几个问题,使其不太适合测试特定临床人群:它可能很繁琐,需要手动反馈,并且要求患者高度配合。先前的研究试图通过采用眼动反应时间替代手动反应,同时保持标准自动视野检查典型的固定网格刺激呈现方式,来创建比标准自动视野检查更用户友好的替代方法。然而,这种方法没有利用眼动追踪所带来的高空间和时间分辨率。在本研究中,我们引入了一种新颖的眼动追踪方法来进行高分辨率视野检查。该方法基于对沿伪随机游走并穿插有扫视跳跃的刺激进行连续注视追踪。然后,我们提出两种从连续注视追踪数据中获取视野图的计算方法:第一种基于使用无阈值聚类增强(TFCE)算法对眼部位置偏差进行时空整合;第二种基于使用模拟视野缺损来训练深度循环神经网络(RNN)。这两种方法具有互补特性:TFCE在神经生理学上是合理的,其输出与使用 Humphrey 视野分析仪进行的标准自动视野检查显著相关,而RNN在重建模拟暗点方面的准确性明显优于TFCE,但在转化为青光眼患者的临床数据方面表现不佳。虽然这两种方法都需要进一步优化,但它们显示出有潜力成为比标准自动视野检查对患者更友好的替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e167/8117233/9eef5fd0b3b9/fnins-15-650540-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验