Yong Jiawen, von Bremen Julia, Ruiz-Heiland Gisela, Ruf Sabine
Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany.
Front Cell Dev Biol. 2021 Apr 28;9:645005. doi: 10.3389/fcell.2021.645005. eCollection 2021.
We aimed to investigate the molecular effect that adiponectin exerts on cementoblasts especially in the presence of compressive forces. OCCM-30 cells (M. Somerman, NIH, NIDCR, United States) were used. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and western blots were employed to verify if the mRNA and protein levels of adiponectin receptors (AdipoRs), mitogen-activated protein kinase (MAPK), and β-catenin signaling were influenced by compressive forces or adiponectin. Moreover, siRNAs targeting α, , , , and as well as pharmacological MAPK inhibition were performed. We found that compressive forces increase the expression of . Adiponectin and compression up-regulate α,, , and as well as β- gene expression. Western blots showed that co-stimuli activate the MAPK and β-catenin signaling pathways. MAPK inhibition alters the compression-induced β-catenin activation and the siRNAs targeting , α, and , showing the interaction of single MAPK molecules and β-catenin signaling in response to compression or adiponectin. Silencing by a dominantly negative version of α and attenuates adiponectin-induced TCF/LEF reporter activation. Together, we found that light compressive forces activate β-catenin and MAPK signaling pathways. Adiponectin regulates β-catenin signaling principally by inactivating the GSK-3β kinase activity. β-Catenin expression was partially inhibited by MAPK blockade, indicating that MAPK plays a crucial role regulating β-catenin during cementogenesis. Moreover, adiponectin modulates GSK-3β and β-catenin mostly through AdipoR1. P38α is a key connector between β-catenin, TCF/LEF transcription, and MAPK signaling pathway.
我们旨在研究脂联素对成牙骨质细胞的分子作用,尤其是在存在压缩力的情况下。使用了OCCM - 30细胞(美国国立牙科和颅面研究所M. Somerman提供)。采用实时逆转录聚合酶链反应(RT-PCR)和蛋白质免疫印迹法来验证脂联素受体(AdipoRs)、丝裂原活化蛋白激酶(MAPK)和β-连环蛋白信号通路的mRNA和蛋白质水平是否受到压缩力或脂联素的影响。此外,还进行了针对α、 、 、 、 和 的小干扰RNA(siRNAs)实验以及MAPK的药理学抑制实验。我们发现压缩力会增加 的表达。脂联素和压缩力上调α、 、 、 和 以及β- 基因的表达。蛋白质免疫印迹显示,联合刺激可激活MAPK和β-连环蛋白信号通路。MAPK抑制改变了压缩诱导的β-连环蛋白激活,而针对 、α和 的siRNAs表明单个MAPK分子与β-连环蛋白信号通路在对压缩力或脂联素的反应中存在相互作用。用显性负性版本的α和 进行沉默可减弱脂联素诱导的TCF/LEF报告基因激活。总之,我们发现轻度压缩力可激活β-连环蛋白和MAPK信号通路。脂联素主要通过使糖原合成酶激酶-3β(GSK-3β)激酶活性失活来调节β-连环蛋白信号通路。MAPK阻断可部分抑制β-连环蛋白表达,表明MAPK在牙骨质形成过程中调节β-连环蛋白起着关键作用。此外,脂联素主要通过AdipoR1调节GSK-3β和β-连环蛋白。P38α是β-连环蛋白、TCF/LEF转录和MAPK信号通路之间的关键连接分子。