Alam Tauhidul, Al Redwan Newaz Abdullah, Bobadilla Leonardo, Alsabban Wesam H, Smith Ryan N, Karimoddini Ali
Department of Computer Science, Louisiana State University, Shreveport, LA, United States.
Department of Electrical and Computer Engineering, North Carolina A&T State University, Greensboro, NC, United States.
Front Robot AI. 2021 Mar 19;8:621820. doi: 10.3389/frobt.2021.621820. eCollection 2021.
Ocean ecosystems have spatiotemporal variability and dynamic complexity that require a long-term deployment of an autonomous underwater vehicle for data collection. A new generation of long-range autonomous underwater vehicles (LRAUVs), such as the Slocum glider and Tethys-class AUV, has emerged with high endurance, long-range, and energy-aware capabilities. These new vehicles provide an effective solution to study different oceanic phenomena across multiple spatial and temporal scales. For these vehicles, the ocean environment has forces and moments from changing water currents which are generally on the order of magnitude of the operational vehicle velocity. Therefore, it is not practical to generate a simple trajectory from an initial location to a goal location in an uncertain ocean, as the vehicle can deviate significantly from the prescribed trajectory due to disturbances resulted from water currents. Since state estimation remains challenging in underwater conditions, feedback planning must incorporate state uncertainty that can be framed into a stochastic energy-aware path planning problem. This article presents an energy-aware feedback planning method for an LRAUV utilizing its kinematic model in an underwater environment under motion and sensor uncertainties. Our method uses ocean dynamics from a predictive ocean model to understand the water flow pattern and introduces a goal-constrained belief space to make the feedback plan synthesis computationally tractable. Energy-aware feedback plans for different water current layers are synthesized through sampling and ocean dynamics. The synthesized feedback plans provide strategies for the vehicle that drive it from an environment's initial location toward the goal location. We validate our method through extensive simulations involving the Tethys vehicle's kinematic model and incorporating actual ocean model prediction data.
海洋生态系统具有时空变异性和动态复杂性,这需要长期部署自主水下航行器来进行数据收集。新一代远程自主水下航行器(LRAUV),如Slocum滑翔器和特提斯级自主水下航行器,已经出现,具有高续航能力、远程能力和能量感知能力。这些新型航行器为跨多个时空尺度研究不同海洋现象提供了有效的解决方案。对于这些航行器来说,海洋环境中水流变化产生的力和力矩通常与航行器的运行速度处于同一数量级。因此,在不确定的海洋中从初始位置生成一条简单的到目标位置的轨迹是不切实际的,因为航行器可能会因水流产生的干扰而显著偏离规定轨迹。由于在水下条件下状态估计仍然具有挑战性,反馈规划必须纳入状态不确定性,这可以构建为一个随机能量感知路径规划问题。本文提出了一种针对LRAUV的能量感知反馈规划方法,该方法在运动和传感器不确定性的水下环境中利用其运动学模型。我们的方法利用预测海洋模型中的海洋动力学来理解水流模式,并引入目标约束信念空间以使反馈计划合成在计算上易于处理。通过采样和海洋动力学为不同水流层合成能量感知反馈计划。合成的反馈计划为航行器提供了从环境的初始位置驶向目标位置的策略。我们通过涉及特提斯航行器运动学模型并纳入实际海洋模型预测数据的广泛模拟来验证我们的方法。