Suppr超能文献

老年人群的神经影像学研究:文献综述。

Neuroimaging in the Oldest-Old: A Review of the Literature.

机构信息

Department of Neurology, University of California, Irvine, CA, USA.

Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.

出版信息

J Alzheimers Dis. 2021;82(1):129-147. doi: 10.3233/JAD-201578.

Abstract

The oldest-old, those 85 years and older, are the fastest growing segment of the population and present with the highest prevalence of dementia. Given the importance of neuroimaging measures to understand aging and dementia, the objective of this study was to review neuroimaging studies performed in oldest-old participants. We used PubMed, Google Scholar, and Web of Science search engines to identify in vivo CT, MRI, and PET neuroimaging studies either performed in the oldest-old or that addressed the oldest-old as a distinct group in analyses. We identified 60 studies and summarized the main group characteristics and findings. Generally, oldest-old participants presented with greater atrophy compared to younger old participants, with most studies reporting a relatively stable constant decline in brain volumes over time. Oldest-old participants with greater global atrophy and atrophy in key brain structures such as the medial temporal lobe were more likely to have dementia or cognitive impairment. The oldest-old presented with a high burden of white matter lesions, which were associated with various lifestyle factors and some cognitive measures. Amyloid burden as assessed by PET, while high in the oldest-old compared to younger age groups, was still predictive of transition from normal to impaired cognition, especially when other adverse neuroimaging measures (atrophy and white matter lesions) were also present. While this review highlights past neuroimaging research in the oldest-old, it also highlights the dearth of studies in this important population. It is imperative to perform more neuroimaging studies in the oldest-old to better understand aging and dementia.

摘要

最年长的老年人,即 85 岁及以上的老年人,是人口中增长最快的群体,也是痴呆症患病率最高的群体。鉴于神经影像学测量对了解衰老和痴呆症的重要性,本研究的目的是回顾在最年长的老年人参与者中进行的神经影像学研究。我们使用 PubMed、Google Scholar 和 Web of Science 搜索引擎,确定了在体内 CT、MRI 和 PET 神经影像学研究中,要么在最年长的老年人中进行,要么在分析中明确将最年长的老年人作为一个不同的群体。我们确定了 60 项研究,并总结了主要的群体特征和发现。一般来说,与年轻的老年人参与者相比,最年长的老年人参与者表现出更大的萎缩,大多数研究报告说,随着时间的推移,大脑体积的相对稳定的持续下降。大脑整体萎缩和内侧颞叶等关键大脑结构萎缩较大的最年长的老年人更有可能患有痴呆症或认知障碍。最年长的老年人有很高的白质病变负担,这与各种生活方式因素和一些认知测量有关。通过 PET 评估的淀粉样蛋白负担虽然在最年长的老年人中比在年轻年龄组中更高,但仍可预测从正常认知到认知障碍的转变,尤其是当存在其他不良神经影像学测量(萎缩和白质病变)时。虽然本综述强调了过去在最年长的老年人中进行的神经影像学研究,但也强调了在这个重要人群中缺乏研究。在最年长的老年人中进行更多的神经影像学研究至关重要,以更好地了解衰老和痴呆症。

相似文献

1
Neuroimaging in the Oldest-Old: A Review of the Literature.
J Alzheimers Dis. 2021;82(1):129-147. doi: 10.3233/JAD-201578.
2
Factors and brain imaging features associated with cognition in oldest-old patients with Alzheimer-type dementia.
J Neurol Sci. 2024 Mar 15;458:122929. doi: 10.1016/j.jns.2024.122929. Epub 2024 Feb 10.
3
What Determines Cognitive Functioning in the Oldest-Old? The EMIF-AD 90+ Study.
J Gerontol B Psychol Sci Soc Sci. 2021 Sep 13;76(8):1499-1511. doi: 10.1093/geronb/gbaa152.
4
Longitudinal neuroimaging biomarkers differ across Alzheimer's disease phenotypes.
Brain. 2020 Jul 1;143(7):2281-2294. doi: 10.1093/brain/awaa155.
6
Low cortical iron and high entorhinal cortex volume promote cognitive functioning in the oldest-old.
Neurobiol Aging. 2018 Apr;64:68-75. doi: 10.1016/j.neurobiolaging.2017.12.014. Epub 2017 Dec 20.
10

引用本文的文献

1
Cerebral perfusion and amyloidosis in the oldest-old.
Alzheimers Dement. 2024 Dec;20(12):9068-9075. doi: 10.1002/alz.14357. Epub 2024 Nov 13.
3
Associations of Amyloid Burden, White Matter Hyperintensities, and Hippocampal Volume With Cognitive Trajectories in the 90+ Study.
Neurology. 2024 Aug 13;103(3):e209665. doi: 10.1212/WNL.0000000000209665. Epub 2024 Jul 15.
4
5
Alcohol Use Disorder and Dementia: A Review.
Alcohol Res. 2024 May 23;44(1):03. doi: 10.35946/arcr.v44.1.03. eCollection 2024.
6
Longitudinal hippocampal atrophy in hippocampal sclerosis of aging.
Aging Brain. 2023 Aug 12;4:100092. doi: 10.1016/j.nbas.2023.100092. eCollection 2023.
8
Diabetes and cognitive function: An evidence-based current perspective.
World J Diabetes. 2023 Feb 15;14(2):92-109. doi: 10.4239/wjd.v14.i2.92.
9
Evaluation of in vivo staging of amyloid deposition in cognitively unimpaired elderly aged 78-94.
Mol Psychiatry. 2022 Oct;27(10):4335-4342. doi: 10.1038/s41380-022-01685-6. Epub 2022 Jul 20.
10
White Matter Alterations in Depressive Disorder.
Front Immunol. 2022 May 12;13:826812. doi: 10.3389/fimmu.2022.826812. eCollection 2022.

本文引用的文献

1
Utility of MRI in the identification of hippocampal sclerosis of aging.
Alzheimers Dement. 2021 May;17(5):847-855. doi: 10.1002/alz.12241. Epub 2020 Dec 7.
3
White Matter Hyperintensities and Hippocampal Atrophy in Relation to Cognition: The 90+ Study.
J Am Geriatr Soc. 2019 Sep;67(9):1827-1834. doi: 10.1111/jgs.15990. Epub 2019 Jun 6.
4
Blood Pressure Circadian Variation, Cognition and Brain Imaging in 90+ Year-Olds.
Front Aging Neurosci. 2019 Apr 17;11:54. doi: 10.3389/fnagi.2019.00054. eCollection 2019.
5
Subiculum volumes associated with memory function in the oldest-old individuals aged 95 years and older.
Geriatr Gerontol Int. 2019 Apr;19(4):347-351. doi: 10.1111/ggi.13614. Epub 2019 Feb 25.
6
Pathological, imaging and genetic characteristics support the existence of distinct TDP-43 types in non-FTLD brains.
Acta Neuropathol. 2019 Feb;137(2):227-238. doi: 10.1007/s00401-018-1951-7. Epub 2019 Jan 2.
7
Sleep, hippocampal volume, and cognition in adults over 90 years old.
Aging Clin Exp Res. 2018 Nov;30(11):1307-1318. doi: 10.1007/s40520-018-1030-x. Epub 2018 Sep 3.
8
Amyloid deposition and brain structure as long-term predictors of MCI, dementia, and mortality.
Neurology. 2018 May 22;90(21):e1920-e1928. doi: 10.1212/WNL.0000000000005549. Epub 2018 Apr 25.
10
Low cortical iron and high entorhinal cortex volume promote cognitive functioning in the oldest-old.
Neurobiol Aging. 2018 Apr;64:68-75. doi: 10.1016/j.neurobiolaging.2017.12.014. Epub 2017 Dec 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验