Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
J Agric Food Chem. 2021 May 26;69(20):5734-5745. doi: 10.1021/acs.jafc.0c07782. Epub 2021 May 17.
Exploring novel -hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD) inhibitors has become one of the most promising research directions in herbicide innovation. On the basis of our tremendous interest in exploiting more powerful HPPD inhibitors, we designed a family of benzyl-containing triketone-aminopyridines via a structure-based drug design (SBDD) strategy and then synthesized them. Among these prepared derivatives, the best active 3-hydroxy-2-(3,5,6-trichloro-4-((4-isopropylbenzyl)amino)picolinoyl)cyclohex-2-en-1-one (, IC = 0.047 μM) exhibited a 5.8-fold enhancement in inhibiting () HPPD activity over that of commercial mesotrione (IC = 0.273 μM). The predicted docking models and calculated energy contributions of the key residues for small molecules suggested that an additional π-π stacking interaction with Phe-392 and hydrophobic contacts with Met-335 and Pro-384 were detected in HPPD upon the binding of the best active compound compared with that of the reference mesotrione. Such a molecular mechanism and the resulting binding affinities coincide with the proposed design scheme and experimental values. It is noteworthy that inhibitors (3-hydroxy-2-(3,5,6-trichloro-4-((4-chlorobenzyl)amino)picolinoyl)cyclohex-2-en-1-one), (3-hydroxy-2-(3,5,6-trichloro-4-((4-methylbenzyl)amino)picolinoyl)cyclohex-2-en-1-one), and displayed excellent greenhouse herbicidal effects at 150 g of active ingredient (ai)/ha after postemergence treatment. Furthermore, compound showed superior weed-controlling efficacy against () versus that of the positive control mesotrione at multiple test dosages (120, 60, and 30 g ai/ha). These findings imply that compound , as a novel lead of HPPD inhibitors, possesses great potential for application in specifically combating the malignant weed .
探索新型 - 羟基苯基丙酮酸双加氧酶(EC 1.13.11.27,HPPD)抑制剂已成为除草剂创新最有前途的研究方向之一。基于我们对开发更强大的 HPPD 抑制剂的浓厚兴趣,我们通过基于结构的药物设计(SBDD)策略设计了一系列含苄基的三酮-氨基吡啶,并随后对其进行了合成。在这些制备的衍生物中,活性最佳的 3-羟基-2-(3,5,6-三氯-4-((4-异丙基苄基)氨基)吡啶酰基)环己-2-烯-1-酮(,IC = 0.047 μM)抑制活性比商业麦草畏(IC = 0.273 μM)高 5.8 倍。小分子关键残基预测对接模型和计算能量贡献表明,与参考麦草畏相比,在最佳活性化合物结合时,在 HPPD 中检测到与 Phe-392 的额外π-π堆积相互作用以及与 Met-335 和 Pro-384 的疏水接触。这种分子机制和由此产生的结合亲和力与所提出的设计方案和实验值一致。值得注意的是,抑制剂 (3-羟基-2-(3,5,6-三氯-4-((4-氯苄基)氨基)吡啶酰基)环己-2-烯-1-酮)、 (3-羟基-2-(3,5,6-三氯-4-((4-甲基苄基)氨基)吡啶酰基)环己-2-烯-1-酮)和 在后茬处理 150 g 有效成分(ai)/ha 后表现出优异的温室除草效果。此外,化合物 在多个测试剂量(120、60 和 30 g ai/ha)下对 ()表现出优于阳性对照麦草畏的除草效果。这些发现表明,化合物 ,作为 HPPD 抑制剂的新型先导化合物,具有在专门防治恶性杂草 方面的巨大应用潜力。