Suppr超能文献

折纸设计的一种加法算法。

An additive algorithm for origami design.

机构信息

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138.

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139.

出版信息

Proc Natl Acad Sci U S A. 2021 May 25;118(21). doi: 10.1073/pnas.2019241118.

Abstract

Inspired by the allure of additive fabrication, we pose the problem of origami design from a different perspective: How can we grow a folded surface in three dimensions from a seed so that it is guaranteed to be isometric to the plane? We solve this problem in two steps: by first identifying the geometric conditions for the compatible completion of two separate folds into a single developable fourfold vertex, and then showing how this foundation allows us to grow a geometrically compatible front at the boundary of a given folded seed. This yields a complete marching, or additive, algorithm for the inverse design of the complete space of developable quad origami patterns that can be folded from flat sheets. We illustrate the flexibility of our approach by growing ordered, disordered, straight, and curved-folded origami and fitting surfaces of given curvature with folded approximants. Overall, our simple shift in perspective from a global search to a local rule has the potential to transform origami-based metastructure design.

摘要

受增材制造的吸引力启发,我们从不同的角度提出折纸设计问题:我们如何从种子中以三维方式生长折叠表面,以确保其与平面等距?我们分两步解决这个问题:首先确定将两个单独的折叠合并成单个可展四折顶点的兼容条件,然后展示如何在此基础上在给定折叠种子的边界处生长出几何兼容的正面。这为可从平板折叠的可展四边形折纸模式的完整空间的逆向设计提供了一个完整的、逐步的、加法的算法。我们通过生长有序的、无序的、直线的和曲线折叠的折纸以及用折叠逼近拟合给定曲率的曲面来展示我们方法的灵活性。总的来说,我们从全局搜索到局部规则的简单视角转变有可能改变基于折纸的超结构设计。

相似文献

1
An additive algorithm for origami design.
Proc Natl Acad Sci U S A. 2021 May 25;118(21). doi: 10.1073/pnas.2019241118.
2
Design of rigid-foldable doubly curved origami tessellations based on trapezoidal crease patterns.
Proc Math Phys Eng Sci. 2017 Apr;473(2200):20170016. doi: 10.1098/rspa.2017.0016. Epub 2017 Apr 12.
3
Propagation of curved folding: the folded annulus with multiple creases exists.
Beitr Algebra Geom. 2022;63(1):19-43. doi: 10.1007/s13366-021-00568-1. Epub 2021 Mar 16.
4
Geometric mechanics of periodic pleated origami.
Phys Rev Lett. 2013 May 24;110(21):215501. doi: 10.1103/PhysRevLett.110.215501. Epub 2013 May 21.
5
Programming curvature using origami tessellations.
Nat Mater. 2016 May;15(5):583-8. doi: 10.1038/nmat4540. Epub 2016 Jan 25.
6
Unraveling metamaterial properties in zigzag-base folded sheets.
Sci Adv. 2015 Sep 18;1(8):e1500224. doi: 10.1126/sciadv.1500224. eCollection 2015 Sep.
7
Lattice mechanics of origami tessellations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jul;92(1):013205. doi: 10.1103/PhysRevE.92.013205. Epub 2015 Jul 27.
8
Design and simulation of origami structures with smooth folds.
Proc Math Phys Eng Sci. 2017 Apr;473(2200):20160716. doi: 10.1098/rspa.2016.0716. Epub 2017 Apr 26.
9
Rigid folding equations of degree-6 origami vertices.
Proc Math Phys Eng Sci. 2022 Apr;478(2260):20220051. doi: 10.1098/rspa.2022.0051. Epub 2022 Apr 13.
10
Uncovering the deformation mechanisms of origami metamaterials by introducing generic degree-four vertices.
Phys Rev E. 2016 Oct;94(4-1):043002. doi: 10.1103/PhysRevE.94.043002. Epub 2016 Oct 24.

引用本文的文献

2
Totimorphic assemblies from neutrally stable units.
Proc Natl Acad Sci U S A. 2021 Oct 19;118(42). doi: 10.1073/pnas.2107003118.

本文引用的文献

1
Non-Euclidean origami.
Phys Rev E. 2020 Sep;102(3-1):031001. doi: 10.1103/PhysRevE.102.031001.
2
Topological transitions in the configuration space of non-Euclidean origami.
Phys Rev E. 2020 Apr;101(4-1):043003. doi: 10.1103/PhysRevE.101.043003.
3
Helical Miura origami.
Phys Rev E. 2020 Mar;101(3-1):033002. doi: 10.1103/PhysRevE.101.033002.
5
Rigidity percolation and geometric information in floppy origami.
Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8119-8124. doi: 10.1073/pnas.1820505116. Epub 2019 Apr 5.
6
Self-folding origami at any energy scale.
Nat Commun. 2017 May 18;8:15477. doi: 10.1038/ncomms15477.
7
Design of rigid-foldable doubly curved origami tessellations based on trapezoidal crease patterns.
Proc Math Phys Eng Sci. 2017 Apr;473(2200):20170016. doi: 10.1098/rspa.2017.0016. Epub 2017 Apr 12.
9
Origami building blocks: Generic and special four-vertices.
Phys Rev E. 2016 Feb;93(2):023003. doi: 10.1103/PhysRevE.93.023003. Epub 2016 Feb 3.
10
Programming curvature using origami tessellations.
Nat Mater. 2016 May;15(5):583-8. doi: 10.1038/nmat4540. Epub 2016 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验