Farnham Johnna, Hull Thomas C, Rumbolt Aubrey
Department of Mathematics, Tufts University, Medford, MA, USA.
Department of Mathematical Sciences, Western New England University, Springfield, MA, USA.
Proc Math Phys Eng Sci. 2022 Apr;478(2260):20220051. doi: 10.1098/rspa.2022.0051. Epub 2022 Apr 13.
Rigid origami, with applications ranging from nano-robots to unfolding solar sails in space, describes when a material is folded along straight crease line segments while keeping the regions between the creases planar. Prior work has found explicit equations for the folding angles of a flat-foldable degree-4 origami vertex and some cases of degree-6 vertices. We extend this work to generalized symmetries of the degree-6 vertex where all sector angles equal . We enumerate the different viable rigid folding modes of these degree-6 crease patterns and then use second-order Taylor expansions and prior rigid folding techniques to find algebraic folding angle relationships between the creases. This allows us to explicitly compute the configuration space of these degree-6 vertices, and in the process we uncover new explanations for the effectiveness of Weierstrass substitutions in modelling rigid origami. These results expand the toolbox of rigid origami mechanisms that engineers and materials scientists may use in origami-inspired designs.
刚性折纸的应用范围涵盖从纳米机器人到太空中展开的太阳能帆板等领域,它描述的是当一种材料沿着直的折痕线段折叠时,折痕之间的区域保持平面的情况。先前的研究已经找到了关于可平面折叠的4度折纸顶点以及一些6度顶点情况的折叠角的显式方程。我们将这项工作扩展到所有扇形角都相等的6度顶点的广义对称性情况。我们列举了这些6度折痕图案的不同可行刚性折叠模式,然后使用二阶泰勒展开式和先前的刚性折叠技术来找到折痕之间的代数折叠角关系。这使我们能够明确计算这些6度顶点的构型空间,在此过程中,我们揭示了魏尔斯特拉斯代换在模拟刚性折纸有效性方面的新解释。这些结果扩展了工程师和材料科学家在受折纸启发的设计中可能使用的刚性折纸机制的工具箱。