de la Garza Cesar Gabriel Vera, Rodriguez Luis Daniel Solis, Fomine Serguei, Vallejo Narváez Wilmer E
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, CU, Coyoacán, 04510, México, DF, Mexico.
J Mol Model. 2021 May 18;27(6):171. doi: 10.1007/s00894-021-04789-y.
This contribution explores the systematic substitution of phosphorene monoflakes (Mfs) and biflakes (Bfs) with aluminum, silicon, and sulfur. These systems were investigated using density functional theory employing the TPSS exchange-correlation functional and complete active space self-consistent field (CASSCF) calculations. Al and Si substitution produces significant structural changes in both Mfs and Bfs compared to S-substituted and pristine systems. However, in Mfs, all heteroatoms generate a decrease in band gap and the ionization potentials (IP), and an increase in electron affinity (EA) in comparison with pristine phosphorene. Al doping improves the hole mobility in the phosphorene monoflake, while Si and S substitutions exhibit a similar behavior on EAs and reorganization energies. For Bfs, the presence of Si-Si and Al-P interlaminar interactions causes structural changes and higher binding energies for Si-Bfs and Al-Bfs. Regarding the electronic properties of Bfs, substitution with Si does not produce significant variations in the band gap. Nevertheless, it conduces the formation of hole transport materials, which does not occur in Si-Mfs. The same is observed for Al systems, whereas no correlation was identified between the doping level and reorganization energies for S complexes. The substitution with Al and S leads to an opposite behavior of the band gap and IP values, while the EA variation is similar. In summary, the nature of heteroatom and the doping degree can modify the semiconductor character and electronic properties of phosphorene mono- and biflakes, whose trends are closely related to the atomic properties considered. Overall, these computational calculations provide significant insights into the study of doped phosphorene materials.
本论文探讨了用铝、硅和硫对单层磷烯(Mfs)和双层磷烯(Bfs)进行系统替代。采用密度泛函理论,运用TPSS交换关联泛函和完全活性空间自洽场(CASSCF)计算方法对这些体系进行了研究。与硫取代体系和原始体系相比,铝和硅取代在单层磷烯和双层磷烯中都产生了显著的结构变化。然而,在单层磷烯中,与原始磷烯相比,所有杂原子都会导致带隙和电离势(IP)降低,电子亲和势(EA)增加。铝掺杂提高了单层磷烯中的空穴迁移率,而硅和硫取代在电子亲和势和重组能方面表现出相似的行为。对于双层磷烯,硅 - 硅和铝 - 磷层间相互作用的存在导致了硅双层磷烯和铝双层磷烯的结构变化和更高的结合能。关于双层磷烯的电子性质,用硅取代不会使带隙产生显著变化。然而,它有助于形成空穴传输材料,而在硅单层磷烯中不会出现这种情况。铝体系也观察到了同样的现象,而对于硫配合物,未发现掺杂水平与重组能之间的相关性。用铝和硫取代导致带隙和IP值呈现相反的变化趋势,而电子亲和势的变化相似。总之,杂原子的性质和掺杂程度可以改变单层和双层磷烯的半导体特性和电子性质,其趋势与所考虑的原子性质密切相关。总体而言,这些计算为掺杂磷烯材料的研究提供了重要的见解。