School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, China.
State Key Laboratory of Optoelectronic Materials and Technologies, Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China.
Environ Sci Technol. 2021 Jun 1;55(11):7711-7720. doi: 10.1021/acs.est.1c01152. Epub 2021 May 18.
Hydroxyl radicals (OH) generated in the photocatalytic process are crucial to the conversion of methane (CH) to value-added methanol (CHOH) at room temperature. However, utilizing noble metal-free catalysts and low-energy photons of solar light, such as visible and near-infrared light (vis-NIR), is difficult to provide more electron states to form OH radicals. Here, we developed FeOOH/LiWO core-shell nanorods via a two-step in/out co-modification of hexagonal tungsten oxide (h-WO): (1) lithium ions intercalating into the hexagonal tunnels of h-WO to form LiWO nanorods and (2) using FeOOH-wrapped LiWO to obtain FeOOH/LiWO core-shell nanorods. Introduction of lithium induces polaron transition in LiWO, enabling the absorption of vis-NIR light. Interestingly, FeOOH-based Fenton-like reaction when HO is selected as an oxidant favors the generation of more OH radicals available for CH oxidation to CHOH. Meanwhile, FeOOH with Fe as an "electron sink" highly improves the separation of photoinduced electrons and holes in LiWO. Eventually, efficient selective formation of CHOH is achieved with remarkable generation rates up to ∼342 and ∼160 μmol g at visible light (420-700 nm) and NIR light (≥800 nm), respectively. Our finding opens up new possibilities for developing noble metal-free catalysts for solar energy-driven CH conversion to CHOH under ambient conditions.
羟基自由基 (OH) 在光催化过程中生成,对于在室温下将甲烷 (CH) 转化为有价值的甲醇 (CHOH) 至关重要。然而,利用无贵金属的催化剂和太阳能的低能量光子,如可见光和近红外光 (vis-NIR),很难提供更多的电子态来形成 OH 自由基。在这里,我们通过两步内外共修饰六方氧化钨 (h-WO) 开发了 FeOOH/LiWO 核壳纳米棒:(1) 锂离子嵌入 h-WO 的六方隧道中形成 LiWO 纳米棒,和 (2) 使用 FeOOH 包裹的 LiWO 获得 FeOOH/LiWO 核壳纳米棒。锂离子的引入诱导了 LiWO 中的极化子跃迁,使它能够吸收 vis-NIR 光。有趣的是,当 HO 被选为氧化剂时,基于 FeOOH 的类 Fenton 反应有利于生成更多的 OH 自由基,这些自由基可用于 CH 的氧化转化为 CHOH。同时,FeOOH 中的 Fe 作为“电子汇”,极大地提高了 LiWO 中光生电子和空穴的分离效率。最终,在可见光 (420-700nm) 和近红外光 (≥800nm) 下,分别实现了高效的选择性 CHOH 形成,生成速率分别高达约 342 和 160 μmol g。我们的发现为在环境条件下开发用于太阳能驱动 CH 转化为 CHOH 的无贵金属催化剂开辟了新的可能性。