Suppr超能文献

直接耦合分析中生物物理相互作用模式的识别。

Identification of biophysical interaction patterns in direct coupling analysis.

作者信息

Schmidt Michael, Hamacher Kay

机构信息

Department of Physics, TU Darmstadt, Karolinenpl. 5, 64289 Darmstadt, Germany.

Department of Biology, TU Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany.

出版信息

Phys Rev E. 2021 Apr;103(4-1):042418. doi: 10.1103/PhysRevE.103.042418.

Abstract

Direct-coupling analysis is a statistical learning method for protein contact prediction based on sequence information alone. The maximum entropy principle leads to an effective inverse Potts model. Predictions on contacts are based on fitted local fields and couplings from an empirical multiple sequence alignment. Typically, the l_{2} norm of the resulting two-body couplings is used for contact prediction. However, this procedure discards important information. In this paper we show that the usage of the full fields and coupling information improves prediction accuracy.

摘要

直接耦合分析是一种仅基于序列信息进行蛋白质接触预测的统计学习方法。最大熵原理导致了一个有效的逆Potts模型。接触预测基于从经验多序列比对中拟合的局部场和耦合。通常,所得两体耦合的l₂范数用于接触预测。然而,这个过程会丢弃重要信息。在本文中,我们表明使用完整的场和耦合信息可以提高预测准确性。

相似文献

1
Identification of biophysical interaction patterns in direct coupling analysis.
Phys Rev E. 2021 Apr;103(4-1):042418. doi: 10.1103/PhysRevE.103.042418.
2
Three-body interactions improve contact prediction within direct-coupling analysis.
Phys Rev E. 2017 Nov;96(5-1):052405. doi: 10.1103/PhysRevE.96.052405. Epub 2017 Nov 9.
3
Synthetic protein alignments by CCMgen quantify noise in residue-residue contact prediction.
PLoS Comput Biol. 2018 Nov 5;14(11):e1006526. doi: 10.1371/journal.pcbi.1006526. eCollection 2018 Nov.
4
Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
PLoS Comput Biol. 2017 Jan 5;13(1):e1005324. doi: 10.1371/journal.pcbi.1005324. eCollection 2017 Jan.
5
The evolution of contact prediction: evidence that contact selection in statistical contact prediction is changing.
Bioinformatics. 2020 Mar 1;36(6):1750-1756. doi: 10.1093/bioinformatics/btz816.
6
Selection of sequence motifs and generative Hopfield-Potts models for protein families.
Phys Rev E. 2019 Sep;100(3-1):032128. doi: 10.1103/PhysRevE.100.032128.
7
Prediction of Structures and Interactions from Genome Information.
Adv Exp Med Biol. 2018;1105:123-152. doi: 10.1007/978-981-13-2200-6_9.
8
Direct coevolutionary couplings reflect biophysical residue interactions in proteins.
J Chem Phys. 2016 Nov 7;145(17):174102. doi: 10.1063/1.4966156.
9
DIRECT: RNA contact predictions by integrating structural patterns.
BMC Bioinformatics. 2019 Oct 15;20(1):497. doi: 10.1186/s12859-019-3099-4.
10
hoDCA: higher order direct-coupling analysis.
BMC Bioinformatics. 2018 Dec 29;19(1):546. doi: 10.1186/s12859-018-2583-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验