Suppr超能文献

病理学影响心电图信号压缩的性能。

Pathologies affect the performance of ECG signals compression.

机构信息

Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 12, 616 00, Brno, Czech Republic.

Institute of Scientific Instruments, The Czech Academy of Sciences, Královopolská 147, 612 64, Brno, Czech Republic.

出版信息

Sci Rep. 2021 May 18;11(1):10514. doi: 10.1038/s41598-021-89817-w.

Abstract

The performance of ECG signals compression is influenced by many things. However, there is not a single study primarily focused on the possible effects of ECG pathologies on the performance of compression algorithms. This study evaluates whether the pathologies present in ECG signals affect the efficiency and quality of compression. Single-cycle fractal-based compression algorithm and compression algorithm based on combination of wavelet transform and set partitioning in hierarchical trees are used to compress 125 15-leads ECG signals from CSE database. Rhythm and morphology of these signals are newly annotated as physiological or pathological. The compression performance results are statistically evaluated. Using both compression algorithms, physiological signals are compressed with better quality than pathological signals according to 8 and 9 out of 12 quality metrics, respectively. Moreover, it was statistically proven that pathological signals were compressed with lower efficiency than physiological signals. Signals with physiological rhythm and physiological morphology were compressed with the best quality. The worst results reported the group of signals with pathological rhythm and pathological morphology. This study is the first one which deals with effects of ECG pathologies on the performance of compression algorithms. Signal-by-signal rhythm and morphology annotations (physiological/pathological) for the CSE database are newly published.

摘要

ECG 信号压缩的性能受到许多因素的影响。然而,目前还没有一项研究主要关注 ECG 病理对压缩算法性能的可能影响。本研究评估了 ECG 信号中存在的病理是否会影响压缩的效率和质量。使用基于单循环分形的压缩算法和基于小波变换和分层树集分割组合的压缩算法,对 CSE 数据库中的 125 个 15 导联 ECG 信号进行压缩。这些信号的节律和形态被新注释为生理或病理。使用 8 项和 9 项质量指标中的 12 项质量指标,对压缩性能结果进行了统计评估。使用这两种压缩算法,生理信号的压缩质量都优于病理信号。此外,统计证明病理信号的压缩效率低于生理信号。具有生理节律和生理形态的信号压缩质量最好。报告的最差结果是具有病理节律和病理形态的信号组。这是第一项研究 ECG 病理对压缩算法性能影响的研究。为 CSE 数据库中每个信号的节律和形态(生理/病理)进行了新的注释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b59/8131635/1881284856c6/41598_2021_89817_Fig1_HTML.jpg

相似文献

1
Pathologies affect the performance of ECG signals compression.
Sci Rep. 2021 May 18;11(1):10514. doi: 10.1038/s41598-021-89817-w.
3
Exploiting prior knowledge in compressed sensing wireless ECG systems.
IEEE J Biomed Health Inform. 2015 Mar;19(2):508-19. doi: 10.1109/JBHI.2014.2325017. Epub 2014 May 16.
4
An effective and efficient compression algorithm for ECG signals with irregular periods.
IEEE Trans Biomed Eng. 2006 Jun;53(6):1198-205. doi: 10.1109/TBME.2005.863961.
5
A 2-D ECG compression method based on wavelet transform and modified SPIHT.
IEEE Trans Biomed Eng. 2005 Jun;52(6):999-1008. doi: 10.1109/TBME.2005.846727.
6
Compression and Encryption of ECG Signal Using Wavelet and Chaotically Huffman Code in Telemedicine Application.
J Med Syst. 2016 Mar;40(3):73. doi: 10.1007/s10916-016-0433-5. Epub 2016 Jan 16.
7
Electrocardiography signal compression using non-decimated stationary wavelet transform-based technique.
Biomed Phys Eng Express. 2023 Jun 14;9(4). doi: 10.1088/2057-1976/acdbd1.
8
Automatic real-time ECG coding methodology guaranteeing signal interpretation quality.
IEEE Trans Biomed Eng. 2008 Nov;55(11):2519-27. doi: 10.1109/TBME.2008.2001263.
9
Wavelet compression of multichannel ECG data by enhanced set partitioning in hierarchical trees algorithm.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:5238-43. doi: 10.1109/IEMBS.2006.259415.
10
Modified SPIHT wavelet compression for ECG signal.
J Med Eng Technol. 2007 Jan-Feb;31(1):29-35. doi: 10.1080/03091900500312942.

本文引用的文献

2
A novel ECG signal compression method using spindle convolutional auto-encoder.
Comput Methods Programs Biomed. 2019 Jul;175:139-150. doi: 10.1016/j.cmpb.2019.03.019. Epub 2019 Apr 17.
3
A Comparative Analysis of Methods for Evaluation of ECG Signal Quality after Compression.
Biomed Res Int. 2018 Jul 18;2018:1868519. doi: 10.1155/2018/1868519. eCollection 2018.
4
Clinical Approach to Patients with Palpitations.
Card Electrophysiol Clin. 2018 Jun;10(2):387-396. doi: 10.1016/j.ccep.2018.02.010.
5
Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach.
Diagnostics (Basel). 2018 Jan 16;8(1):10. doi: 10.3390/diagnostics8010010.
6
CSE database: extended annotations and new recommendations for ECG software testing.
Med Biol Eng Comput. 2017 Aug;55(8):1473-1482. doi: 10.1007/s11517-016-1607-5. Epub 2016 Dec 31.
7
A real-time ECG data compression and transmission algorithm for an e-health device.
IEEE Trans Biomed Eng. 2011 Sep;58(9):2448-55. doi: 10.1109/TBME.2011.2156794. Epub 2011 May 19.
8
Automatic real-time ECG coding methodology guaranteeing signal interpretation quality.
IEEE Trans Biomed Eng. 2008 Nov;55(11):2519-27. doi: 10.1109/TBME.2008.2001263.
9
An ECG signals compression method and its validation using NNs.
IEEE Trans Biomed Eng. 2008 Apr;55(4):1319-26. doi: 10.1109/TBME.2008.918465.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验