IEEE J Biomed Health Inform. 2015 Mar;19(2):508-19. doi: 10.1109/JBHI.2014.2325017. Epub 2014 May 16.
Recent results in telecardiology show that compressed sensing (CS) is a promising tool to lower energy consumption in wireless body area networks for electrocardiogram (ECG) monitoring. However, the performance of current CS-based algorithms, in terms of compression rate and reconstruction quality of the ECG, still falls short of the performance attained by state-of-the-art wavelet-based algorithms. In this paper, we propose to exploit the structure of the wavelet representation of the ECG signal to boost the performance of CS-based methods for compression and reconstruction of ECG signals. More precisely, we incorporate prior information about the wavelet dependencies across scales into the reconstruction algorithms and exploit the high fraction of common support of the wavelet coefficients of consecutive ECG segments. Experimental results utilizing the MIT-BIH Arrhythmia Database show that significant performance gains, in terms of compression rate and reconstruction quality, can be obtained by the proposed algorithms compared to current CS-based methods.
最近在远程心脏病学方面的研究成果表明,压缩感知(CS)是一种很有前途的工具,可以降低无线体域网中用于心电图(ECG)监测的能量消耗。然而,目前基于 CS 的算法在压缩率和 ECG 重建质量方面的性能仍然不如基于最新的小波算法的性能。在本文中,我们提出利用 ECG 信号的小波表示结构来提高基于 CS 的方法在 ECG 信号的压缩和重建方面的性能。更确切地说,我们将跨尺度的小波相关性的先验信息纳入到重建算法中,并利用连续 ECG 段的小波系数的共同支持的高比例。利用麻省理工学院生物医学工程研究所心律失常数据库进行的实验结果表明,与现有的基于 CS 的方法相比,所提出的算法可以在压缩率和重建质量方面获得显著的性能提升。