Suppr超能文献

无创性 MRI 衍生血流动力学模拟预测分支肺动脉狭窄的导管介入治疗成功与失败:在猪模型中的概念验证和实验验证。

Non-invasive MRI Derived Hemodynamic Simulation to Predict Successful vs. Unsuccessful Catheter Interventions for Branch Pulmonary Artery Stenosis: Proof-of-Concept and Experimental Validation in Swine.

机构信息

Cardiovascular Research Center, University of Wisconsin - Madison, Madison, USA.

Division of Cardiology, Department of Medicine, William S. Middleton Memorial Veteran's Hospital, Office: D222, 2500 Overlook Terrace, Madison, WI, 53705-4108, USA.

出版信息

Cardiovasc Eng Technol. 2021 Oct;12(5):494-504. doi: 10.1007/s13239-021-00543-w. Epub 2021 May 18.

Abstract

OBJECTIVE

This study assessed the ability of hemodynamic simulations to predict the success of catheter interventions in a swine model of branch pulmonary artery stenosis (bPAS).

BACKGROUND

bPAS commonly occurs in congenital heart disease and is often managed with catheter based interventions. However, despite technical success, bPAS interventions do not lead to improved distal pulmonary blood flow (PBF) distribution in approximately 1/3rd of patients. New tools are needed to better identify which patients with bPAS would most benefit from catheter interventions.

METHODS

For 13 catheter intervention cases in swine with surgically created left PAS (LPAS), PA pressures from right heart catheterization (RHC) and PBF distributions from MRI were measured before and after catheter interventions. Hemodynamic simulations with a reduced order computational fluid dynamics (CFD) model were performed using non-invasive PBF measurements derived from MRI, and then correlated with changes in invasive measures of hemodynamics and PBF distributions before and after catheter intervention to relieve bPAS.

RESULTS

Compared to experimentally measured changes in left PBF distribution, simulations had a small bias (3.4 ± 11.1%), moderate agreement (ICC = 0.69 [0.24-0.90], 0.71 [0.23-0.91]), and good diagnostic capability to predict successful interventions (> 20% PBF increase) (AUC 0.83 [0.59-1.0]). Simulations had poorer prediction of changes in stenotic pressure gradient (ICC = 0.28 [- 0.33 to 0.73], r = 0.57 [- 0.04 to 0.87]) and MPA systolic pressure (ICC = 0.00 [- 0.52 to 0.53], r = 0.29 [- 0.32 to 0.72]).

CONCLUSION

While there was only weak to moderate agreement between predicted and measured changes in PA pressures and pulmonary blood flow distributions, hemodynamic simulations did show good diagnostic value for predicting successful versus unsuccessful catheter based interventions to relieve bPAS. The results of this proof of concept study are promising and should encourage future development for using hemodynamic models in planning interventions for patients with bPAS.

摘要

目的

本研究评估血流动力学模拟在猪分支肺动脉狭窄(bPAS)模型中预测导管介入治疗成功的能力。

背景

bPAS 常见于先天性心脏病,常采用导管介入治疗。然而,尽管技术上成功,但 bPAS 介入并不能改善约 1/3 患者的远端肺血流量(PBF)分布。需要新的工具来更好地识别哪些 bPAS 患者最受益于导管介入治疗。

方法

对 13 例猪左肺动脉狭窄(LPAS)手术模型的导管介入病例进行研究,在导管介入前后分别通过右心导管(RHC)测量肺动脉压力和 MRI 测量 PBF 分布。使用来自 MRI 的非侵入性 PBF 测量值进行降阶计算流体动力学(CFD)模型的血流动力学模拟,然后将其与导管介入前后侵入性测量的血流动力学和 PBF 分布变化相关联,以缓解 bPAS。

结果

与左 PBF 分布的实验测量变化相比,模拟结果存在较小的偏差(3.4±11.1%),中等程度的一致性(ICC=0.69[0.24-0.90],0.71[0.23-0.91]),并且具有良好的诊断能力来预测成功的介入治疗(>20%的 PBF 增加)(AUC 0.83[0.59-1.0])。模拟预测狭窄压力梯度(ICC=0.28[-0.33 至 0.73],r=0.57[-0.04 至 0.87])和 MPA 收缩压(ICC=0.00[-0.52 至 0.53],r=0.29[-0.32 至 0.72])的变化能力较差。

结论

尽管 PA 压力和肺血流分布变化的预测值与实测值之间的一致性仅为弱到中等,但血流动力学模拟确实显示出良好的诊断价值,可预测缓解 bPAS 的成功与不成功的基于导管的介入治疗。本概念验证研究的结果令人鼓舞,应鼓励未来开发血流动力学模型,以用于计划 bPAS 患者的介入治疗。

相似文献

3
Pulmonary artery and lung parenchymal growth following early versus delayed stent interventions in a swine pulmonary artery stenosis model.
Catheter Cardiovasc Interv. 2020 Dec;96(7):1454-1464. doi: 10.1002/ccd.29326. Epub 2020 Oct 16.
4
Stent interventions for pulmonary artery stenosis improve bi-ventricular flow efficiency in a swine model.
J Cardiovasc Magn Reson. 2021 Feb 25;23(1):13. doi: 10.1186/s12968-021-00709-4.
7
Longitudinal Evolution of Pulmonary Artery Wall Shear Stress in a Swine Model of Pulmonary Artery Stenosis and Stent Interventions.
Ann Biomed Eng. 2021 Jun;49(6):1477-1492. doi: 10.1007/s10439-020-02696-6. Epub 2021 Jan 4.
8
Virtual Transcatheter Interventions for Peripheral Pulmonary Artery Stenosis in Williams and Alagille Syndromes.
J Am Heart Assoc. 2022 Mar 15;11(6):e023532. doi: 10.1161/JAHA.121.023532. Epub 2022 Mar 5.

引用本文的文献

1
Translation of Animal Study to Human: In Silico Based Development of Implantable Pulmonary Artery Pressure Sensor.
Int J Numer Method Biomed Eng. 2025 Jun;41(6):e70050. doi: 10.1002/cnm.70050.

本文引用的文献

2
Stent interventions for pulmonary artery stenosis improve bi-ventricular flow efficiency in a swine model.
J Cardiovasc Magn Reson. 2021 Feb 25;23(1):13. doi: 10.1186/s12968-021-00709-4.
3
Longitudinal Evolution of Pulmonary Artery Wall Shear Stress in a Swine Model of Pulmonary Artery Stenosis and Stent Interventions.
Ann Biomed Eng. 2021 Jun;49(6):1477-1492. doi: 10.1007/s10439-020-02696-6. Epub 2021 Jan 4.
4
Pulmonary artery and lung parenchymal growth following early versus delayed stent interventions in a swine pulmonary artery stenosis model.
Catheter Cardiovasc Interv. 2020 Dec;96(7):1454-1464. doi: 10.1002/ccd.29326. Epub 2020 Oct 16.
6
Non-invasive procedural planning using computed tomography-derived fractional flow reserve.
Catheter Cardiovasc Interv. 2021 Mar;97(4):614-622. doi: 10.1002/ccd.29210. Epub 2020 Aug 26.
7
A Distributed Lumped Parameter Model of Blood Flow.
Ann Biomed Eng. 2020 Dec;48(12):2870-2886. doi: 10.1007/s10439-020-02545-6. Epub 2020 Jul 1.
9
Use of 3D rotational angiography to perform computational fluid dynamics and virtual interventions in aortic coarctation.
Catheter Cardiovasc Interv. 2020 Feb;95(2):294-299. doi: 10.1002/ccd.28507. Epub 2019 Oct 14.
10
4D Flow MRI Estimation of Boundary Conditions for Patient Specific Cardiovascular Simulation.
Ann Biomed Eng. 2019 Aug;47(8):1786-1798. doi: 10.1007/s10439-019-02285-2. Epub 2019 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验