Wang Yi, Ouyang Jie, Wang Xiaodong
School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710129, China.
Soft Matter. 2021 Jun 16;17(23):5682-5699. doi: 10.1039/d1sm00250c.
Hydrodynamic interactions have a major impact on the suspension properties, but they are absent in atomic and molecular fluids due to a lack of intervening medium at close range. To reproduce the correct hydrodynamic interactions, lubrication correction is essential to compensate the missing short-range hydrodynamics from the fluids. However, lubrication correction requires many simulations in particle-based simulations of colloidal suspensions. To address the problem, we employ an active learning strategy based on Gaussian process regression (GPR) for normal and tangential lubrication corrections to significantly reduce the number of necessary simulations and apply the correction to the coupled multiscale simulation of monodisperse hard-sphere colloidal suspensions. In particular, a single-particle dissipative particle dynamics (DPD) model with parameter correction is used to describe the solvent-solvent and colloid-solvent interactions, and a discrete element method (DEM) model to depict the colloid-colloid frictional contacts. The lubrication correction results demonstrate that only six and four independent simulations (observation points for GPR training) are required to achieve accurate normal and tangential lubrication corrections, respectively. To validate the machine learning of lubrication correction based on GPR, we investigate the self-diffusion coefficients of colloids, suspension rheology and microstructure using the coupled DPD-DEM model with GPR lubrication correction. Our simulation results show that the machine learning of lubrication correction based on GPR is effective and the lubrication corrected DPD-DEM model is indeed capable of accurately capturing hydrodynamic interactions and correctly reproducing dynamical and rheological properties of colloidal suspensions. Moreover, the machine learning of lubrication correction based on GPR is not limited to the coupled DPD-DEM simulation of colloidal suspensions presented here, but can be easily applied to other particle-based simulations of particulate suspensions.
流体动力学相互作用对悬浮特性有重大影响,但在原子和分子流体中不存在这种相互作用,因为在近距离缺乏中间介质。为了再现正确的流体动力学相互作用,润滑校正对于补偿流体中缺失的短程流体动力学至关重要。然而,在基于粒子的胶体悬浮液模拟中,润滑校正需要进行许多模拟。为了解决这个问题,我们采用基于高斯过程回归(GPR)的主动学习策略进行法向和切向润滑校正,以显著减少必要模拟的数量,并将校正应用于单分散硬球胶体悬浮液的耦合多尺度模拟。具体而言,使用具有参数校正的单粒子耗散粒子动力学(DPD)模型来描述溶剂 - 溶剂和胶体 - 溶剂相互作用,使用离散元方法(DEM)模型来描绘胶体 - 胶体摩擦接触。润滑校正结果表明,分别仅需要六次和四次独立模拟(GPR训练的观测点)就可以实现准确的法向和切向润滑校正。为了验证基于GPR的润滑校正的机器学习,我们使用具有GPR润滑校正的耦合DPD - DEM模型研究了胶体的自扩散系数、悬浮液流变学和微观结构。我们的模拟结果表明,基于GPR的润滑校正机器学习是有效的,并且经过润滑校正的DPD - DEM模型确实能够准确捕捉流体动力学相互作用,并正确再现胶体悬浮液的动力学和流变特性。此外,基于GPR的润滑校正机器学习不仅限于此处介绍的胶体悬浮液的耦合DPD - DEM模拟,还可以轻松应用于其他基于粒子的颗粒悬浮液模拟。