Zubov Alexandr, Wilson José Francisco, Kroupa Martin, Šoóš Miroslav, Kosek Juraj
Department of Chemical Engineering , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague , Czech Republic.
Langmuir. 2019 Oct 1;35(39):12754-12764. doi: 10.1021/acs.langmuir.9b01107. Epub 2019 Sep 19.
The rheological behavior of particle suspensions is a challenging problem because its description depends on the interaction of two phases with different material properties. This interaction can lead to complex behavior because of acting forces at the solid-liquid interface such as lubrication. The goal of this work is to propose a method for the modeling of fluids viscoelasticity in the presence of spherical particles including fluid-particle interactions. To accomplish this, we employed a simplified approach using the discrete element method (DEM) coupled with computational fluid dynamics (CFD) to simulate a suspension of particles under oscillatory flow in a three-dimensional computational domain. The choice of DEM provides versatility to customize the constitutive relations of particle-particle and fluid-particle interactions. Particularly, we focused on studying the effect of solid-liquid interaction (lubrication forces) on the viscoelasticity of the particulate system. To analyze the effect of this interfacial force, we simplified the particle-particle interaction to a nonadhesive elastic contact, thus avoiding aggregation of the particles. The work consists of two parts: the first one is a pure CFD model of the oscillatory motion applied to a Newtonian fluid (without particles), and the second is an extended version including DEM to simulate the viscoelasticity of the particle suspension. In this way, we can isolate the effect of fluid inertia on the viscoelasticity of the particulate system. The obtained results show that the model is capable to reproduce qualitatively the increase of the storage modulus as a function of the solid volume fraction and the dependence of dynamic moduli on the applied shear strain. The presented methodology provides a new insight into modeling of rheology by customizing interactions at the particle level based purely on first-principles with model parameters including solely material properties and physically identifiable quantities.
颗粒悬浮液的流变行为是一个具有挑战性的问题,因为其描述取决于具有不同材料特性的两相之间的相互作用。由于固液界面处的作用力(如润滑作用),这种相互作用会导致复杂的行为。这项工作的目标是提出一种在存在球形颗粒(包括流体 - 颗粒相互作用)的情况下对流体粘弹性进行建模的方法。为了实现这一目标,我们采用了一种简化方法,即使用离散元法(DEM)与计算流体动力学(CFD)相结合,在三维计算域中模拟振荡流作用下的颗粒悬浮液。DEM的选择提供了定制颗粒 - 颗粒和流体 - 颗粒相互作用本构关系的通用性。特别地,我们专注于研究固液相互作用(润滑力)对颗粒系统粘弹性的影响。为了分析这种界面力的影响,我们将颗粒 - 颗粒相互作用简化为非粘性弹性接触,从而避免颗粒聚集。这项工作由两部分组成:第一部分是应用于牛顿流体(无颗粒)的振荡运动的纯CFD模型,第二部分是包含DEM的扩展版本,用于模拟颗粒悬浮液的粘弹性。通过这种方式,我们可以分离出流体惯性对颗粒系统粘弹性的影响。所得结果表明,该模型能够定性地再现储能模量随固体体积分数的增加以及动态模量对施加剪切应变的依赖性。所提出的方法通过纯粹基于第一性原理在颗粒水平上定制相互作用,为流变学建模提供了新的见解,模型参数仅包括材料特性和物理可识别量。