Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
Center for Bio-Inspired Energy Science, Northwestern University, Evanston, Illinois 60208, USA and Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, USA.
Soft Matter. 2021 May 19;17(19):4949-4956. doi: 10.1039/d1sm00168j.
Hierarchical self-assembly leading to organized supramolecular structures across multiple length scales has been of great recent interest. Earlier work from our laboratory reported the complexation of peptide amphiphile (PA) supramolecular polymers with oppositely charged polyelectrolytes into a single solid membrane at a macroscopic interface. We report here the formation of bulk gels with many internal interfaces between the covalent and supramolecular polymer components formed by the rapid chaotic mixing of solutions, one containing negatively charged PA nanofibers and the other the positively charged biopolymer chitosan. We found that formation of a contact layer at the interface of the solutions locks the formation of hydrogels with lamellar microstructure. The nanofiber morphology of the supramolecular polymer is essential to this process since gels do not form when solutions of supramolecular assemblies form spherical micelles. We found that rheological properties of the gels can be tuned by changing the relative amounts of each component. Furthermore, both positively and negatively charged proteins are easily encapsulated within the contact layer of the gel, which provides an interesting biomedical function for these systems.
分层自组装导致在多个长度尺度上形成有组织的超分子结构,这是最近的研究热点。我们实验室早期的工作报道了肽两亲物(PA)超分子聚合物与带相反电荷的聚电解质在宏观界面处复合成单一固体膜。在这里,我们报告了通过溶液的快速混沌混合形成具有许多内部共价和超分子聚合物成分之间界面的块状凝胶,一种溶液含有带负电荷的 PA 纳米纤维,另一种溶液含有带正电荷的生物聚合物壳聚糖。我们发现,溶液界面处接触层的形成锁定了具有层状微结构的水凝胶的形成。超分子聚合物的纳米纤维形态对于这个过程是必不可少的,因为当超分子组装体的溶液形成球形胶束时,凝胶不会形成。我们发现,通过改变各组分的相对量,可以调节凝胶的流变性能。此外,正电荷和负电荷的蛋白质都很容易被包裹在凝胶的接触层内,这为这些系统提供了有趣的生物医学功能。