Suppr超能文献

利托那韦构象多晶型的分子、固态和表面结构与其物理化学性质的关系。

Molecular, Solid-State and Surface Structures of the Conformational Polymorphic Forms of Ritonavir in Relation to their Physicochemical Properties.

机构信息

School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, China.

Centre for the Digital Design of Drug Products, School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.

出版信息

Pharm Res. 2021 Jun;38(6):971-990. doi: 10.1007/s11095-021-03048-2. Epub 2021 May 19.

Abstract

PURPOSE

Application of multi-scale modelling workflows to characterise polymorphism in ritonavir with regard to its stability, bioavailability and processing.

METHODS

Molecular conformation, polarizability and stability are examined using quantum mechanics (QM). Intermolecular synthons, hydrogen bonding, crystal morphology and surface chemistry are modelled using empirical force fields.

RESULTS

The form I conformation is more stable and polarized with more efficient intermolecular packing, lower void space and higher density, however its shielded hydroxyl is only a hydrogen bond donor. In contrast, the hydroxyl in the more open but less stable and polarized form II conformation is both a donor and acceptor resulting in stronger hydrogen bonding and a more stable crystal structure but one that is less dense. Both forms have strong 1D networks of hydrogen bonds and the differences in packing energies are partially offset in form II by its conformational deformation energy difference with respect to form I. The lattice energies converge at shorter distances for form I, consistent with its preferential crystallization at high supersaturation. Both forms exhibit a needle/lath-like crystal habit with slower growing hydrophobic side and faster growing hydrophilic capping habit faces with aspect ratios increasing from polar-protic, polar-aprotic and non-polar solvents, respectively. Surface energies are higher for form II than form I and increase with solvent polarity. The higher deformation, lattice and surface energies of form II are consistent with its lower solubility and hence bioavailability.

CONCLUSION

Inter-relationship between molecular, solid-state and surface structures of the polymorphic forms of ritonavir are quantified in relation to their physical-chemical properties.

摘要

目的

应用多尺度建模工作流程来描述利托那韦的多晶型现象,以研究其稳定性、生物利用度和加工过程。

方法

使用量子力学(QM)研究分子构象、极化率和稳定性。使用经验力场研究分子间的互变异构体、氢键、晶体形态和表面化学。

结果

I 型构象更稳定且极化程度更高,分子间堆积效率更高,空隙空间更小,密度更高,但屏蔽的羟基仅为氢键供体。相比之下,在更开放但稳定性和极化程度较低的 II 型构象中,羟基既是供体又是受体,导致更强的氢键和更稳定的晶体结构,但密度较低。两种形式都具有强烈的 1D 氢键网络,在 II 型中,由于其与 I 型构象的构象变形能差异,堆积能的差异部分得到抵消。对于 I 型,晶格能在较短的距离收敛,这与其在高过饱和度下优先结晶一致。两种形式都表现出针状/片状晶体习性,具有较慢生长的疏水性侧面和较快生长的亲水性盖帽习性面,其纵横比分别从极性质子性、极性非质子性和非极性溶剂中增加。与 I 型相比,II 型的表面能更高,且随溶剂极性增加而增加。II 型的变形能、晶格能和表面能较高与其较低的溶解度和生物利用度一致。

结论

定量描述了利托那韦多晶型形式的分子、固态和表面结构之间的相互关系,以及它们的物理化学性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bab/8217055/205c1f40d42a/11095_2021_3048_Fig1_HTML.jpg

相似文献

2
Ritonavir: an extraordinary example of conformational polymorphism.
Pharm Res. 2001 Jun;18(6):859-66. doi: 10.1023/a:1011052932607.
4
Dapsone Form V: A Late Appearing Thermodynamic Polymorph of a Pharmaceutical.
Mol Pharm. 2019 Jul 1;16(7):3221-3236. doi: 10.1021/acs.molpharmaceut.9b00419. Epub 2019 May 31.
5
Structural analysis of polymorphism and solvation in tranilast.
J Pharm Sci. 2005 Mar;94(3):651-65. doi: 10.1002/jps.20268.
6
Elucidation of crystal form diversity of the HIV protease inhibitor ritonavir by high-throughput crystallization.
Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2180-4. doi: 10.1073/pnas.0437744100. Epub 2003 Feb 25.
7
Disparities of Single-Particle Growth Rates in Buried Versus Exposed Ritonavir Crystals within Amorphous Solid Dispersions.
Mol Pharm. 2020 Dec 7;17(12):4564-4571. doi: 10.1021/acs.molpharmaceut.0c00744. Epub 2020 Nov 5.
8
Habit Modification of the Active Pharmaceutical Ingredient Lovastatin Through a Predictive Solvent Selection Approach.
J Pharm Sci. 2019 May;108(5):1779-1787. doi: 10.1016/j.xphs.2018.12.012. Epub 2018 Dec 24.
9
Surface effects on the crystallization of ritonavir glass.
J Pharm Sci. 2015 Jan;104(1):276-9. doi: 10.1002/jps.24229. Epub 2014 Nov 7.
10
Fabrication, solid state characterization and bioavailability assessment of stable binary amorphous phases of Ritonavir with Quercetin.
Eur J Pharm Biopharm. 2015 Jan;89:329-38. doi: 10.1016/j.ejpb.2014.12.025. Epub 2014 Dec 24.

引用本文的文献

4
Crystal size, shape, and conformational changes drive both the disappearance and reappearance of ritonavir polymorphs in the mill.
Proc Natl Acad Sci U S A. 2024 Apr 9;121(15):e2319127121. doi: 10.1073/pnas.2319127121. Epub 2024 Apr 1.
6
Role of Molecular, Crystal, and Surface Chemistry in Directing the Crystallization of Entacapone Polymorphs on the Au(111) Template Surface.
Cryst Growth Des. 2023 May 1;23(6):4522-4537. doi: 10.1021/acs.cgd.3c00294. eCollection 2023 Jun 7.
7
Grinding Method for Phase Transformation of Glycine.
ACS Omega. 2023 May 4;8(19):17116-17121. doi: 10.1021/acsomega.3c01435. eCollection 2023 May 16.
8
Low-Frequency Vibrational Spectroscopy and Quantum Mechanical Simulations of the Crystalline Polymorphs of the Antiviral Drug Ribavirin.
Mol Pharm. 2022 Sep 5;19(9):3385-3393. doi: 10.1021/acs.molpharmaceut.2c00509. Epub 2022 Aug 11.

本文引用的文献

1
On the origin of the extremely different solubilities of polyethers in water.
Nat Commun. 2019 Jun 28;10(1):2893. doi: 10.1038/s41467-019-10783-z.
2
The CSD Drug Subset: The Changing Chemistry and Crystallography of Small Molecule Pharmaceuticals.
J Pharm Sci. 2019 May;108(5):1655-1662. doi: 10.1016/j.xphs.2018.12.011. Epub 2019 Jan 5.
3
Habit Modification of the Active Pharmaceutical Ingredient Lovastatin Through a Predictive Solvent Selection Approach.
J Pharm Sci. 2019 May;108(5):1779-1787. doi: 10.1016/j.xphs.2018.12.012. Epub 2018 Dec 24.
6
Effects of crystal habit on the sticking propensity of ibuprofen-A case study.
Int J Pharm. 2017 Oct 5;531(1):266-275. doi: 10.1016/j.ijpharm.2017.08.091. Epub 2017 Aug 24.
7
BCS class IV drugs: Highly notorious candidates for formulation development.
J Control Release. 2017 Feb 28;248:71-95. doi: 10.1016/j.jconrel.2017.01.014. Epub 2017 Jan 11.
8
Conformational Energy Landscape of the Ritonavir Molecule.
J Phys Chem B. 2016 May 19;120(19):4331-40. doi: 10.1021/acs.jpcb.5b12272. Epub 2016 May 10.
9
The Cambridge Structural Database.
Acta Crystallogr B Struct Sci Cryst Eng Mater. 2016 Apr;72(Pt 2):171-9. doi: 10.1107/S2052520616003954. Epub 2016 Apr 1.
10
Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field.
J Chem Theory Comput. 2010 May 11;6(5):1509-19. doi: 10.1021/ct900587b. Epub 2010 Apr 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验