Suppr超能文献

基于机器学习和深度学习方法的药物诱导性耳毒性的计算机预测。

In silico prediction of drug-induced ototoxicity using machine learning and deep learning methods.

机构信息

Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.

Center for Big Data Research in Health and Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.

出版信息

Chem Biol Drug Des. 2021 Aug;98(2):248-257. doi: 10.1111/cbdd.13894. Epub 2021 Jun 7.

Abstract

Drug-induced ototoxicity has become a serious global problem, because of leading to deafness in hundreds of thousands of people every year. It always results from exposure to drugs or environmental chemicals that cause the impairment and degeneration of the inner ear. Herein, we focused on the in silico modeling of drug-induced ototoxicity of chemicals. We collected 1,102 ototoxic medications and 1,705 non-ototoxic drugs. Based on the data set, a series of computational models were developed with different traditional machine learning and deep learning algorithms implemented on an online chemical database and modeling environment. Six ML models performed best on 5-fold cross-validation and test set. A consensus model was developed with the best individual models. These models were further validated with an external validation. The consensus model showed best predictive ability, with high accuracy of 0.95 on test set and 0.90 on validation set. The consensus model and the data sets used for model development are available at https://ochem.eu/model/46566321. Besides, 16 structural alerts responsible for drug-induced ototoxicity were identified. We hope the results could provide meaningful knowledge and useful tools for ototoxicity evaluation in drug discovery and environmental risk assessment.

摘要

药物性耳毒性已成为一个严重的全球性问题,每年导致数十万人耳聋。它通常是由于接触导致内耳损伤和退化的药物或环境化学物质引起的。在此,我们专注于化学药物诱导耳毒性的计算模型研究。我们收集了 1102 种耳毒性药物和 1705 种非耳毒性药物。基于该数据集,我们使用不同的传统机器学习和深度学习算法在在线化学数据库和建模环境中开发了一系列计算模型。在 5 折交叉验证和测试集中,6 个 ML 模型表现最佳。最佳个体模型被整合为共识模型。这些模型还通过外部验证进行了进一步验证。共识模型显示出最佳的预测能力,在测试集上的准确率为 0.95,在验证集上的准确率为 0.90。共识模型和用于模型开发的数据集可在 https://ochem.eu/model/46566321 上获取。此外,还确定了 16 个导致药物性耳毒性的结构警示。我们希望这些结果能够为药物发现和环境风险评估中的耳毒性评估提供有意义的知识和有用的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验