Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
Chemistry. 2021 Aug 11;27(45):11663-11669. doi: 10.1002/chem.202101221. Epub 2021 Jun 24.
A strategy to reversibly switch the parallel/antiparallel helical conformation of aromatic double helices through the formation/breakage of a disulfide bond is presented. Single-crystal X-ray structures, NMR, and circular dichroism spectroscopy demonstrate that the double helices with terminal thiol groups favor an antiparallel helical arrangement both in the solid state and in solution, while the P/M bias of helicity induced by chiral segments from another extremity of the sequence is weak in this structural motif. The antiparallel helices can be rearranged to parallel helices through the disulfide connection of the sequences. This change enhances the bias of helical handedness and results in absolute chirality control of the double helices. The handedness-mediated process can be governed by the oxidation-reduction cycle, thereby switching the structural arrangement and the enhancement of chiral bias. In addition, we find that the sequences can dimerize into an intermolecular double helix with the disulfide connection. And the helical handedness is also fully controlled due to the head-to-head structural motif.
提出了一种通过形成/断裂二硫键来可逆切换芳族双链的平行/反平行螺旋构象的策略。单晶 X 射线结构、NMR 和圆二色光谱表明,带有末端巯基的双链在固态和溶液中都有利于反平行螺旋排列,而序列另一端的手性片段诱导的螺旋手性的 P/M 偏置在这种结构模式中较弱。通过序列的二硫键连接可以将反平行螺旋重新排列成平行螺旋。这种变化增强了螺旋手性的偏置,并导致双链的绝对手性控制。手性介导的过程可以通过氧化还原循环来控制,从而切换结构排列和增强手性偏置。此外,我们发现这些序列可以通过二硫键连接二聚化成具有分子间双链的结构。并且由于头对头的结构模式,螺旋手性也得到了完全控制。