Suppr超能文献

拓展手性双酚 BINOL 稀土金属催化剂的多功能性:超越对映选择性有机合成。

Expanding the Rare-Earth Metal BINOLate Catalytic Multitool beyond Enantioselective Organic Synthesis.

机构信息

P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States.

Department of Chemistry, Brown University, 324 Brook St., Providence, Rhode Island 02912, United States.

出版信息

Acc Chem Res. 2021 Jun 1;54(11):2637-2648. doi: 10.1021/acs.accounts.1c00148. Epub 2021 May 20.

Abstract

Shibasaki's rare earth alkali metal BINOLate (REMB) framework has provided chemists with a general catalyst platform to access a range of enantioenriched small molecules from the single, commercially available pro-ligand ()- or ()-BINOL. A defining feature of these heterobimetallic frameworks is the high level of catalyst tunability, achieved through the simple modulation of the central rare-earth cation and peripheral alkali metal cations. While this family of multifunctional catalysts displays impressive generality and catalytic capability, detailed mechanistic understanding of these complex, multimetallic systems was lacking prior to our investigations. This backdrop served as initial inspiration for our investigations of this privileged class of complexes over the past decade, which have led to new and exciting advances in catalysis and beyond.In this Account, we describe our investigations using Shibasaki's framework focusing on the central metal-ion, the BINOLate ligands, and the secondary sphere cations. Our studies began with an investigation into the Lewis acidity of the complexes, where we demonstrated that Lewis bases readily coordinate to REMB frameworks when lithium occupies the secondary coordination sphere. This observation was contrasted by the complexes containing sodium or potassium in the secondary coordination sphere, as the rare earth cation is evidently less accessible for substrate binding. Our efforts in understanding the ligand exchange of the complexes enabled the discovery that associative processes dominate the mechanism of ligand exchange and LA/LA (Lewis acid/Lewis acid) and LA/BB (Lewis acid/Brønsted base) catalysis by the REMB frameworks. Replacing metal cations in the secondary coordination sphere with the ,,,-tetramethylguanidinium cation delivered an effective precatalyst that is air and water stable over the course of 6 months.To expand the reactivity of the REMB, we investigated the ability of U cations to occupy the primary coordination sphere and ZnEt and Cu(DBU) cations to occupy the secondary coordination sphere. Synthesizing the REMB complexes using the thiol congener monothioBINOL provided an unusual anionic REMB framework, driven by the oxophilicity of the lithium cations. Using the REMB as a platform for investigating the Ce/Ce redox couple, we demonstrated that, while oxidative cerium functionalization is observed in the case of lithium containing REMBs, salt elimination is observed in the sodium, potassium, and cesium containing REMBs. Furthermore, we found that while the rate of heterogeneous electron transfer for Ce was (Cs) > (K) > (Na) > (Li), the rates of reaction with the oxidant trityl chloride trended in the opposite order with (Li) ≫ (Na) > (K) > (Cs). We attribute this to the ability to form inner-sphere complexes with the oxidant, rather than differences in redox potential or reorganization energies.Applying our knowledge in ligand exchange and redox behavior of Ce containing REMB complexes, we detailed the mechanism for oxidation of the heterochiral cerium REMB frameworks, reiterating the importance of the formation of inner-sphere complexes in the oxidation chemistry of cerium. There are many different avenues for both organic and inorganic investigation of Shibasaki's REMB framework, and our works have demonstrated the richness of the structural chemistry and properties of this framework that inform mechanism and properties of these privileged catalysts.

摘要

桥崎的稀土碱金属 BINOLate(REMB)骨架为化学家提供了一个通用的催化剂平台,可从单一的商业可得的前配体()-或()-BINOL 获得一系列对映体富集的小分子。这些异双金属骨架的一个定义特征是催化剂的高度可调性,通过简单地调节中心稀土阳离子和外围碱金属阳离子来实现。虽然这些多功能催化剂具有令人印象深刻的通用性和催化能力,但在我们的研究之前,对这些复杂的多金属体系的详细机制理解还很缺乏。这一背景是我们过去十年研究这一特殊类配合物的最初灵感来源,这导致了催化和超越催化的新的和令人兴奋的进展。在本报告中,我们描述了我们使用 Shibasaki 的骨架对中心金属离子、BINOLate 配体和次级球阳离子的研究。我们的研究始于对配合物路易斯酸度的研究,我们证明了当锂占据次级配位球时,路易斯碱很容易与 REMB 骨架配位。这一观察结果与含有钠或钾的配合物形成对比,因为稀土阳离子显然更难与底物结合。我们在理解配合物的配体交换方面的努力使我们发现,缔合过程主导着配体交换的机制,以及 REMB 骨架的路易斯酸/路易斯酸(LA/LA)和路易斯酸/布朗斯台德碱(LA/BB)催化。用 1,3,5,7,-四甲基胍鎓阳离子取代次级配位球中的金属阳离子,提供了一种有效的前催化剂,在 6 个月的时间里,它在空气中和水中稳定。为了扩展 REMB 的反应性,我们研究了 U 阳离子占据主配位球和 ZnEt 和 Cu(DBU)阳离子占据次级配位球的能力。使用硫醇同系物单硫 BINOL 合成 REMB 配合物提供了一个不寻常的阴离子 REMB 骨架,这是由锂阳离子的亲氧性驱动的。我们使用 REMB 作为平台来研究 Ce/Ce 氧化还原对,证明了在含有锂的 REMB 中观察到氧化铈官能化,而在含有钠、钾和铯的 REMB 中观察到盐消除。此外,我们发现,虽然铈的非均相电子转移速率为(Cs)>(K)>(Na)>(Li),但与氧化剂三苯基氯甲烷反应的速率趋势与相反,(Li)≫(Na)>(K)>(Cs)。我们将其归因于与氧化剂形成内球配合物的能力,而不是氧化还原电位或重组能的差异。利用我们在含铈 REMB 配合物的配体交换和氧化还原行为方面的知识,我们详细阐述了杂手性铈 REMB 骨架氧化的机制,再次强调了在铈氧化化学中形成内球配合物的重要性。桥崎的 REMB 骨架有许多不同的有机和无机研究途径,我们的工作展示了这个骨架的结构化学和性质的丰富性,这些性质为这些特权催化剂的机制和性质提供了信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验