Suppr超能文献

VAD-MM/GBSA:一种用于提高蛋白质-配体结合自由能计算准确性的可变原子介电 MM/GBSA 模型。

VAD-MM/GBSA: A Variable Atomic Dielectric MM/GBSA Model for Improved Accuracy in Protein-Ligand Binding Free Energy Calculations.

机构信息

Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.

College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, China.

出版信息

J Chem Inf Model. 2021 Jun 28;61(6):2844-2856. doi: 10.1021/acs.jcim.1c00091. Epub 2021 May 20.

Abstract

The molecular mechanics/generalized Born surface area (MM/GBSA) has been widely used in end-point binding free energy prediction in structure-based drug design (SBDD). However, in practice, it is usually being treated as a disputed method mostly because of its system dependence. Here, combining with machine-learning optimization, we developed a novel version of MM/GBSA, named variable atomic dielectric MM/GBSA (VAD-MM/GBSA), by assigning variable dielectric constants directly to the protein/ligand atoms. The new strategy exhibits markedly improved accuracy in binding affinity calculations for various protein-ligand systems and is promising to be used in the postprocessing of structure-based virtual screening. Moreover, VAD-MM/GBSA outperformed prime MM/GBSA in Schrödinger software and showed remarkable predictive performance for specific protein targets, such as POL polyprotein, human immunodeficiency virus type 1 (HIV-1) protease, etc. Our study showed that the VAD-MM/GBSA method with little extra computational overhead provides a potential replacement of the MM/GBSA in AMBER software. An online web server of VAD-MMGBSA has been developed and is now available at http://cadd.zju.edu.cn/vdgb.

摘要

分子力学/广义 Born 表面积(MM/GBSA)已广泛应用于基于结构的药物设计(SBDD)中的终点结合自由能预测。然而,在实践中,由于其系统依赖性,它通常被视为一种有争议的方法。在这里,我们结合机器学习优化,通过直接为蛋白质/配体原子分配可变介电常数,开发了一种新的 MM/GBSA 版本,命名为可变原子介电常数 MM/GBSA(VAD-MM/GBSA)。该新策略在各种蛋白质-配体系统的结合亲和力计算中表现出显著提高的准确性,有望用于基于结构的虚拟筛选的后处理。此外,VAD-MM/GBSA 在 Schrödinger 软件中优于主要的 MM/GBSA,并对特定蛋白质靶标(如 POL 多蛋白、人类免疫缺陷病毒 1(HIV-1)蛋白酶等)表现出显著的预测性能。我们的研究表明,具有较小额外计算开销的 VAD-MM/GBSA 方法为 AMBER 软件中的 MM/GBSA 提供了一种潜在的替代方法。已经开发了一个 VAD-MMGBSA 的在线网络服务器,现在可以在 http://cadd.zju.edu.cn/vdgb 上访问。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验