Suppr超能文献

基于结构的药效团模型用于精准抑制乳腺癌中突变型 ESR2:一种系统的计算方法。

Structure-based pharmacophore modeling for precision inhibition of mutant ESR2 in breast cancer: A systematic computational approach.

机构信息

Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh.

Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, India.

出版信息

Cancer Med. 2024 Aug;13(15):e70074. doi: 10.1002/cam4.70074.

Abstract

BACKGROUND

Breast cancer, a leading cause of female mortality, is closely linked to mutations in estrogen receptor beta (ESR2), particularly in the ligand-binding domain, which contributed to altered signaling pathways and uncontrolled cell growth.

OBJECTIVES/AIMS: This study investigates the molecular and structural aspects of ESR2 mutant proteins to identify shared pharmacophoric regions of ESR2 mutant proteins and potential therapeutic targets aligned within the pharmacophore model.

METHODS

This study was initiated by establishing a common pharmacophore model among three mutant ESR2 proteins (PDB ID: 2FSZ, 7XVZ, and 7XWR). The generated shared feature pharmacophore (SFP) includes four primary binding interactions: Hydrogen bond donors (HBD), hydrogen bond acceptors (HBA), hydrophobic interactions (HPho), and Aromatic interactions (Ar), along with halogen bond donors (XBD) and totalling 11 features (HBD: 2, HBA: 3, HPho: 3, Ar: 2, XBD: 1). By employing an in-house Python script, these 11 features distributed into 336 combinations, which were used as query to isolate a drug library of 41,248 compounds and subjected to virtual screening through the generated SFP.

RESULTS

The virtual screening demonstrated 33 hits showing potential pharmacophoric fit scores and low RMSD value. The top four compounds: ZINC94272748, ZINC79046938, ZINC05925939, and ZINC59928516 showed a fit score of more than 86% and satisfied the Lipinski rule of five. These four compounds and a control underwent molecular (XP Glide mode) docking analysis against wild-type ESR2 protein (PDB ID: 1QKM), resulting in binding affinity of -8.26, -5.73, -10.80, and -8.42 kcal/mol, respectively, along with the control -7.2 kcal/mol. Furthermore, the stability of the selected candidates was determined through molecular dynamics (MD) simulations of 200 ns and MM-GBSA analysis.

CONCLUSION

Based on MD simulations and MM-GBSA analysis, our study identified ZINC05925939 as a promising ESR2 inhibitor among the top four hits. However, it is essential to conduct further wet lab evaluation to assess its efficacy.

摘要

背景

乳腺癌是女性死亡的主要原因之一,与雌激素受体β(ESR2)的突变密切相关,特别是在配体结合域,这导致了信号通路的改变和不受控制的细胞生长。

目的/目标:本研究旨在探讨 ESR2 突变蛋白的分子和结构方面,以确定 ESR2 突变蛋白的共有药效基团区域和潜在的治疗靶点,这些靶点与药效基团模型内的一致。

方法

本研究通过建立三个突变 ESR2 蛋白(PDB ID:2FSZ、7XVZ 和 7XWR)之间的共有药效基团模型来启动。生成的共有特征药效基团(SFP)包括四个主要的结合相互作用:氢键供体(HBD)、氢键受体(HBA)、疏水性相互作用(HPho)和芳香相互作用(Ar),以及卤键供体(XBD),共计 11 个特征(HBD:2、HBA:3、HPho:3、Ar:2、XBD:1)。通过使用内部 Python 脚本,将这 11 个特征分布到 336 种组合中,将其用作查询来分离包含 41,248 种化合物的药物库,并通过生成的 SFP 进行虚拟筛选。

结果

虚拟筛选显示出 33 个具有潜在药效基团拟合分数和低 RMSD 值的命中物。前四种化合物:ZINC94272748、ZINC79046938、ZINC05925939 和 ZINC59928516 的拟合分数超过 86%,满足了 Lipinski 五规则。这四种化合物和一种对照物通过分子(XP Glide 模式)对接分析与野生型 ESR2 蛋白(PDB ID:1QKM)进行对接,得到的结合亲和力分别为-8.26、-5.73、-10.80 和-8.42 kcal/mol,而对照物为-7.2 kcal/mol。此外,通过 200 ns 的分子动力学(MD)模拟和 MM-GBSA 分析确定了所选候选物的稳定性。

结论

基于 MD 模拟和 MM-GBSA 分析,我们的研究确定 ZINC05925939 是前四种命中物中最有希望的 ESR2 抑制剂之一。然而,有必要进行进一步的湿实验室评估来评估其功效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/252b/11299079/044b490c9ef2/CAM4-13-e70074-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验