Suppr超能文献

乳腺癌的术前分期:未增强磁共振成像联合数字乳腺断层合成与动态对比增强磁共振成像的个体内比较

Preoperative Staging in Breast Cancer: Intraindividual Comparison of Unenhanced MRI Combined With Digital Breast Tomosynthesis and Dynamic Contrast Enhanced-MRI.

作者信息

Rizzo Veronica, Moffa Giuliana, Kripa Endi, Caramanico Claudia, Pediconi Federica, Galati Francesca

机构信息

Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy.

出版信息

Front Oncol. 2021 May 4;11:661945. doi: 10.3389/fonc.2021.661945. eCollection 2021.

Abstract

OBJECTIVES

To evaluate the accuracy in lesion detection and size assessment of Unenhanced Magnetic Resonance Imaging combined with Digital Breast Tomosynthesis (UE-MRI+DBT) and Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI), in women with known breast cancer.

METHODS

A retrospective analysis was performed on 84 patients with histological diagnosis of breast cancer, who underwent MRI on a 3T scanner and DBT over 2018-2019, in our Institution. Two radiologists, with 15 and 7 years of experience in breast imaging respectively, reviewed DCE-MRI and UE-MRI (including DWI and T2-w) + DBT images in separate reading sections, unaware of the final histological examination. DCE-MRI and UE-MRI+DBT sensitivity, positive predictive value (PPV) and accuracy were calculated, using histology as the gold standard. Spearman correlation and regression analyses were performed to evaluate lesion size agreement between DCE-MRI Histology, UE-MRI+DBT Histology, and DCE-MRI UE-MRI+DBT. Inter-reader agreement was evaluated using Cohen's κ coefficient. McNemar test was used to identify differences in terms of detection rate between the two methodological approaches. Spearman's correlation analysis was also performed to evaluate the correlation between ADC values and histological features.

RESULTS

109 lesions were confirmed on histological examination. DCE-MRI showed high sensitivity (100% Reader 1, 98% Reader 2), good PPV (89% Reader 1, 90% Reader 2) and accuracy (90% for both readers). UE-MRI+DBT showed 97% sensitivity, 91% PPV and 92% accuracy, for both readers. Lesion size Spearman coefficient were 0.94 (Reader 1) and 0.91 (Reader 2) for DCE-MRI Histology; 0.91 (Reader 1) and 0.90 (Reader 2) for UE-MRI+DBT Histology (p-value <0.001). DCE-MRI UE-MRI+DBT regression coefficient was 0.96 for Reader 1 and 0.94 for Reader 2. Inter-reader agreement was 0.79 for DCE-MRI and 0.94 for UE-MRI+DBT. McNemar test did not show a statistically significant difference between DCE-MRI and UE-MRI+DBT (McNemar test p-value >0.05). Spearman analyses showed an inverse correlation between ADC values and histological grade (p-value <0.001).

CONCLUSIONS

DCE-MRI was the most sensitive imaging technique in breast cancer preoperative staging. However, UE-MRI+DBT demonstrated good sensitivity and accuracy in lesion detection and tumor size assessment. Thus, UE-MRI could be a valid alternative when patients have already performed DBT.

摘要

目的

评估未增强磁共振成像联合数字乳腺断层合成(UE-MRI+DBT)与动态对比增强磁共振成像(DCE-MRI)在已知患有乳腺癌的女性中进行病变检测和大小评估的准确性。

方法

对我院2018年至2019年期间84例经组织学诊断为乳腺癌的患者进行回顾性分析,这些患者均在3T扫描仪上接受了MRI检查及DBT检查。两名分别具有15年和7年乳腺影像诊断经验的放射科医生,在独立阅片环节中分别对DCE-MRI和UE-MRI(包括DWI和T2-w)+DBT图像进行阅片,且均不知最终的组织学检查结果。以组织学检查结果作为金标准,计算DCE-MRI和UE-MRI+DBT的敏感性、阳性预测值(PPV)和准确性。进行Spearman相关性和回归分析,以评估DCE-MRI与组织学、UE-MRI+DBT与组织学以及DCE-MRI与UE-MRI+DBT之间病变大小的一致性。采用Cohen's κ系数评估阅片者间的一致性。使用McNemar检验来确定两种方法在检测率方面的差异。还进行了Spearman相关性分析,以评估ADC值与组织学特征之间的相关性。

结果

组织学检查确诊109个病变。DCE-MRI显示出高敏感性(阅片者1为100%,阅片者2为98%)、良好的PPV(阅片者1为89%,阅片者2为90%)和准确性(两位阅片者均为90%)。UE-MRI+DBT对两位阅片者而言,敏感性均为97%,PPV为91%,准确性为92%。DCE-MRI与组织学的病变大小Spearman系数,阅片者1为0.94,阅片者2为0.91;UE-MRI+DBT与组织学的病变大小Spearman系数,阅片者1为0.91,阅片者2为0.90(p值<0.001)。阅片者1的DCE-MRI与UE-MRI+DBT回归系数为0.96,阅片者2为0.94。DCE-MRI的阅片者间一致性为0.79,UE-MRI+DBT为0.94。McNemar检验未显示DCE-MRI与UE-MRI+DBT之间存在统计学显著差异(McNemar检验p值>0.05)。Spearman分析显示ADC值与组织学分级呈负相关(p值<0.001)。

结论

DCE-MRI是乳腺癌术前分期中最敏感的成像技术。然而,UE-MRI+DBT在病变检测和肿瘤大小评估方面显示出良好的敏感性和准确性。因此,当患者已进行DBT检查时,UE-MRI可能是一种有效的替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52c1/8130555/719da89c52e1/fonc-11-661945-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验