Department of Biomedical Engineering at Ben-Gurion University of the Negev, Ben-Gurion, 8410501 Beer-Sheva, Israel.
School of Electrical and Computer Engineering at Ben-Gurion University of the Negev, Ben-Gurion, 8410501 Beer-Sheva, Israel.
Brief Bioinform. 2021 Nov 5;22(6). doi: 10.1093/bib/bbab149.
Understanding post-transcriptional gene regulation is a key challenge in today's biology. The new technologies of RNAcompete and RNA Bind-n-Seq enable the measurement of the binding intensities of one RNA-binding protein (RBP) to numerous synthetic RNA sequences in a single experiment. Recently, Van Nostrand et al. reported the results of RNA Bind-n-Seq experiments measuring binding of 78 human RBPs. Because 31 of these RBPs were also covered by RNAcompete technology, a large-scale comparison between implementations of these two in vitro technologies is now possible. Here, we assessed the similarities and differences between binding models, represented as a list of $k$-mer scores, inferred from RNAcompete and RNA Bind-n-Seq, and also measured how well these models predict in vivo binding. Our results show that RNA Bind-n-Seq- and RNAcompete-derived models agree (Pearson correlation $> 0.5$) for most RBPs (23 out of 31). RNA Bind-n-Seq-derived $k$-mer scores predict RNAcompete binding measurements quite well (average Pearson correlation 0.26), and both technologies produce $k$-mer scores that achieve comparable results in predicting in vivo binding (average AUC 0.7). When inspecting RNA structural preferences inferred from the data of RNA Bind-n-Seq and RNAcompete, we observed high concordance in binding preferences. Through our study, we developed a new $k$-mer score for RNA Bind-n-Seq and extended it to include RNA structural preferences.
理解转录后基因调控是当今生物学的一个关键挑战。RNAcompete 和 RNA Bind-n-Seq 等新技术能够在单个实验中测量一种 RNA 结合蛋白 (RBP) 与众多合成 RNA 序列的结合强度。最近,Van Nostrand 等人报告了测量 78 个人类 RBP 结合的 RNA Bind-n-Seq 实验结果。由于其中 31 个 RBP 也被 RNAcompete 技术覆盖,因此现在可以对这两种体外技术的实现进行大规模比较。在这里,我们评估了从 RNAcompete 和 RNA Bind-n-Seq 推断出的绑定模型(表示为 k-mer 分数列表)之间的相似性和差异,还测量了这些模型在体内绑定预测中的表现。我们的研究结果表明,对于大多数 RBP(31 个中的 23 个),RNA Bind-n-Seq 和 RNAcompete 衍生的模型是一致的(皮尔逊相关系数>0.5)。RNA Bind-n-Seq 衍生的 k-mer 分数可以很好地预测 RNAcompete 结合测量值(平均皮尔逊相关系数为 0.26),并且这两种技术都可以产生在预测体内结合方面具有相当结果的 k-mer 分数(平均 AUC 为 0.7)。当检查从 RNA Bind-n-Seq 和 RNAcompete 数据推断出的 RNA 结构偏好时,我们观察到绑定偏好具有高度一致性。通过我们的研究,我们开发了一种新的 RNA Bind-n-Seq k-mer 分数,并将其扩展到包括 RNA 结构偏好。