Zheng Jingang, Sun Chengguo, Wang Zhenxing, Liu Shaojun, An Baigang, Sun Zhenhua, Li Feng
School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, China.
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyang, 110016, China.
Angew Chem Int Ed Engl. 2021 Aug 16;60(34):18448-18453. doi: 10.1002/anie.202104183. Epub 2021 Jul 13.
Large-scale implementation of all-solid-state lithium batteries is impeded by the physical limitations of the interface between the electrode and solid electrolyte; specifically, high resistance and poor stability, as well as poor compatibility with Li migration. We report double ionic-electronic transfer interface layers grown at electrode-electrolyte interfaces by in situ polymerization of 2,2'-bithiophene in polyethylene oxide (PEO) electrolyte. For all-solid-state LiFePO ∥PT-PEO-PT∥Li cells, the formation of a conductive polythiophene (PT) layer at the cathode-electrolyte interface resulted in an at least sevenfold decrease in interface resistance, and realized a capacity retention of about 94 % after 1000 cycles along with a lower polarization voltage under a rate of 2 C. The mixed ionic-electronic conductive layers imparted superior interface stability and contact while keeping good compatibility with the Li anode.
全固态锂电池的大规模应用受到电极与固体电解质之间界面的物理限制;具体而言,存在高电阻、稳定性差以及与锂迁移的兼容性差等问题。我们报道了通过在聚环氧乙烷(PEO)电解质中原位聚合2,2'-联噻吩在电极-电解质界面生长的双离子-电子转移界面层。对于全固态LiFePO ∥PT-PEO-PT∥Li电池,在阴极-电解质界面形成导电聚噻吩(PT)层导致界面电阻至少降低了七倍,并在1000次循环后实现了约94%的容量保持率,同时在2C倍率下具有较低的极化电压。混合离子-电子导电层赋予了优异的界面稳定性和接触性,同时与锂阳极保持良好的兼容性。