Suppr超能文献

一步合成用于水电解的非晶态镍铁磷化物分级纳米结构,在高电流密度下具有卓越的稳定性。

One-step synthesis of amorphous nickel iron phosphide hierarchical nanostructures for water electrolysis with superb stability at high current density.

作者信息

Yu Xuefeng, He Xun, Li Rong, Gou Xinglong

机构信息

Chemical Synthesis and Pollution Control key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, P. R. China.

出版信息

Dalton Trans. 2021 Jun 15;50(23):8102-8110. doi: 10.1039/d1dt00852h.

Abstract

The development of noble-metal-free high-performance bifunctional catalysts for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is essential but challenging for hydrogen production from water electrolysis. Herein, amorphous bimetallic nickel-iron phosphide hierarchical nanostructures enrooted on nickel-iron alloy foam (NiFeP/NFF) are facilely fabricated via direct phosphidation of NFF at low temperature and developed as an efficient self-supporting bifunctional electrocatalyst to catalyze both the OER and HER with high activity, fast kinetics and excellent stability. Moreover, an alkaline water electrolyzer simultaneously utilizing NiFeP/NFF as the cathode and anode only needs a cell voltage of 1.58 V to afford a current density of 10 mA cm-2, overpassing most of the reported bifunctional electrocatalysts and comparable to noble metal-based ones. Impressively, the NiFeP/NFF-based symmetric electrolyzer can work well without appreciable performance degradation at a high current density of 500 mA cm-2 for over 1000 h for continuous hydrogen production with 100% faradaic efficiency, showing superb durability and great promise for industrial application.

摘要

开发用于析氧反应(OER)和析氢反应(HER)的无贵金属高性能双功能催化剂对于水电解制氢至关重要,但具有挑战性。在此,通过在低温下对泡沫镍铁合金(NFF)进行直接磷化,轻松制备了植根于泡沫镍铁合金的非晶态双金属镍铁磷化物分级纳米结构,并将其开发为一种高效的自支撑双功能电催化剂,以高活性、快速动力学和优异的稳定性催化OER和HER。此外,一种同时使用NiFeP/NFF作为阴极和阳极的碱性水电解槽仅需1.58 V的电池电压即可提供10 mA cm-2的电流密度,超过了大多数已报道的双功能电催化剂,与基于贵金属的催化剂相当。令人印象深刻的是,基于NiFeP/NFF的对称电解槽在500 mA cm-2的高电流密度下可连续工作超过1000小时而无明显性能下降,以100%的法拉第效率持续制氢,显示出卓越的耐久性和巨大的工业应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验