Canziani Herbert, Bever Frederik, Sommereyns Alexander, Schmidt Michael, Vogel Nicolas
Institute of Particle Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstrasse 4, Erlangen 91058, Germany.
Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-University Erlangen-Nuremberg, Haberstrasse 9a, Erlangen 91058, Germany.
ACS Appl Mater Interfaces. 2021 Jun 2;13(21):25334-25345. doi: 10.1021/acsami.1c02264. Epub 2021 May 21.
Particulate materials with well-engineered properties are of key importance for many aspects in our daily life. Polymer powders with high flowability, for example, play a crucial role in the emerging field of powder-based additive manufacturing processes. However, the polymer- and composite material selection for these technologies is still limited. Here, we demonstrate the design of spherical polymethyl methacrylate (PMMA) and PMMA-SiO composite supraparticle powders with excellent powder flowability and tailored composition for powder-based additive manufacturing. Our process assembles these powders from the bottom up and affords a precise control over surface roughness and internal morphology via the choice of colloidal primary particles. We establish process-structure-property relationships connecting external spray-drying parameters and primary particle sizes with the resulting supraparticle roughness and, subsequently, with the macroscopic powder flowability and powder bed density. In a second step, we demonstrate the control of composition and internal morphology of PMMA-SiO composite supraparticles based on different mass mixings and diameter ratios of the two primary particle dispersions. Finally, we successfully apply the prepared supraparticle powders in powder bed additive manufacturing. The optimized flowability of the composite powders allows the production of two-layered square specimens with fusion between the individual layers and a uniform and tunable distribution of nanoscale SiO additives without requiring the addition of any flowing aids.
具有精心设计特性的颗粒材料在我们日常生活的许多方面都至关重要。例如,具有高流动性的聚合物粉末在新兴的基于粉末的增材制造工艺领域中发挥着关键作用。然而,这些技术的聚合物和复合材料选择仍然有限。在此,我们展示了用于基于粉末的增材制造的具有优异粉末流动性和定制组成的球形聚甲基丙烯酸甲酯(PMMA)和PMMA-SiO复合超颗粒粉末的设计。我们的工艺自下而上组装这些粉末,并通过选择胶体初级颗粒对表面粗糙度和内部形态进行精确控制。我们建立了工艺-结构-性能关系,将外部喷雾干燥参数和初级颗粒尺寸与所得超颗粒粗糙度联系起来,进而与宏观粉末流动性和粉末床密度联系起来。在第二步中,我们展示了基于两种初级颗粒分散体的不同质量混合和直径比来控制PMMA-SiO复合超颗粒的组成和内部形态。最后,我们成功地将制备的超颗粒粉末应用于粉末床增材制造。复合粉末优化后的流动性使得能够生产出具有层间融合且纳米级SiO添加剂分布均匀且可调节的两层方形试样,而无需添加任何流动助剂。