Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Beyazit, Istanbul, Turkey; Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Vatan Street, 34093 Fatih, Istanbul, Turkey.
Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Beyazit, Istanbul, Turkey.
Toxicol Appl Pharmacol. 2021 Jul 15;423:115577. doi: 10.1016/j.taap.2021.115577. Epub 2021 May 18.
Lenvatinib is a tyrosine kinase inhibitor (TKI) approved for the treatment of resistant differentiated thyroid cancer, advanced renal cell carcinoma, unresectable hepatocellular carcinoma, and endometrial carcinoma. Although it is successful in cancer treatment, it can cause life-threatening side effects such as cardiotoxicity. The molecular mechanism of cardiotoxicity caused by lenvatinib is not fully known. In this study, the molecular mechanism of lenvatinib's cardiotoxicity was investigated focusing on mitochondrial toxicity in the H9c2 cardiomyoblastic cell line. Lenvatinib inhibited cell viability at 48 and 72 h exposure with three selected concentrations (1.25 μM, 5 μM and 10 μM); and inhibited intracellular ATP after 72 h exposure compared to the control group. Mitochondrial membrane potential was decreased after 48 h and did not show significant changes after 72 h exposure. Evaluated with real-time PCR, mitochondrial dynamics (Mfn1, Mfn2, OPA1, DRP1, Fis1) expression levels after lenvatinib treatment significantly changed. Lenvatinib triggered the tendency from fusion to fission in mitochondria after 48 h exposure, and increased both fusion and fission after 72 h. The mtDNA ratio increased after 48 h and decreased after 72 h. ASK1, JNK and AMPKα2 increased. UCP2 showed downregulation, SOD2 level showed upregulation and Cat levels decreased after drug treatment. Nrf1 and Nrf2 also changed concentration-dependently. Protein carbonyl levels increased significantly after lenvatinib treatments indicating oxidative stress. The protein levels of the electron transport chain complexes, LONP1, UCP2, and P21 showed significant differences after lenvatinib treatment. The outcome of our study is expected to be a contribution to the understanding of the molecular mechanisms of TKI-induced cardiotoxicity.
仑伐替尼是一种酪氨酸激酶抑制剂(TKI),已被批准用于治疗耐药分化型甲状腺癌、晚期肾细胞癌、不可切除的肝细胞癌和子宫内膜癌。尽管它在癌症治疗中取得了成功,但它会引起危及生命的副作用,如心脏毒性。仑伐替尼引起心脏毒性的分子机制尚不完全清楚。在这项研究中,我们专注于 H9c2 心肌细胞系中的线粒体毒性,研究了仑伐替尼心脏毒性的分子机制。仑伐替尼在 48 和 72 小时暴露于三个选定浓度(1.25 μM、5 μM 和 10 μM)时抑制细胞活力;与对照组相比,在 72 小时暴露后抑制细胞内 ATP。线粒体膜电位在 48 小时后降低,72 小时后没有明显变化。通过实时 PCR 评估,仑伐替尼处理后线粒体动力学(Mfn1、Mfn2、OPA1、DRP1、Fis1)表达水平显著改变。仑伐替尼在 48 小时暴露后引发从融合到裂变的趋势,72 小时后融合和裂变均增加。mtDNA 比值在 48 小时后增加,72 小时后减少。ASK1、JNK 和 AMPKα2 增加。UCP2 下调,SOD2 水平上调,药物处理后 Cat 水平下降。Nrf1 和 Nrf2 也呈浓度依赖性变化。仑伐替尼处理后蛋白质羰基水平显著增加,表明氧化应激。电子传递链复合物、LONP1、UCP2 和 P21 的蛋白质水平在仑伐替尼处理后显示出显著差异。我们的研究结果有望为理解 TKI 引起的心脏毒性的分子机制做出贡献。