Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116, Beyazıt, Istanbul, Turkey.
Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116, Beyazıt, Istanbul, Turkey; Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Vatan Street, 34093, Fatih, Istanbul, Turkey.
Toxicol Lett. 2021 Jan 1;336:39-49. doi: 10.1016/j.toxlet.2020.11.003. Epub 2020 Nov 7.
Regorafenib (RGF) has a great success in the treatment of colorectal cancer, gastrointestinal stromal tumours and hepatocellular carcinoma by inhibiting angiogenic, stromal and oncogenic kinases. However, RGF can induce life-threatening cardiotoxicity including hypertension and cardiac ischemia/infarction. The molecular mechanism of the adverse effects has not been elucidated. Mitochondrial dysfunction is one of the major causes of cardiac diseases since cardiac cells highly need ATP for their contractility. Therefore, we aimed to investigate molecular mechanisms of RGF-induced cardiac adverse effects using H9c2 cell model by focusing on mitochondria. Cells were treated with 0-20 μM RGF for 48 and 72 h. According to our results, RGF inhibited cell proliferation and decreased the ATP content of the cells depending on the exposure time and concentration. Loss of mitochondrial membrane potential was also observed at high dose. Mitochondrial fusion/fission genes and antioxidant SOD2 (superoxide dismutase) gene expression levels increased at high doses in both treatments. Mitochondrial DNA content decreased as exposure time and concentration increased. Also, protein expression levels of mitochondrial complex I and V have reduced and stress protein HSP70 level has increased following RGF treatment. Structural abnormalities in mitochondria was seen with transmission electron microscopy at the applied higher doses. Our findings suggest that RGF-induced cardiotoxicity may be associated with mitochondrial damage in cardiac cells.
瑞戈非尼(RGF)通过抑制血管生成、基质和致癌激酶,在治疗结直肠癌、胃肠道间质瘤和肝细胞癌方面取得了巨大成功。然而,RGF 可引起危及生命的心脏毒性,包括高血压和心肌缺血/梗死。其不良反应的分子机制尚未阐明。由于心肌细胞的收缩需要大量的 ATP,因此线粒体功能障碍是心脏疾病的主要原因之一。因此,我们旨在通过聚焦于线粒体,使用 H9c2 细胞模型来研究 RGF 诱导的心脏不良反应的分子机制。细胞用 0-20 μM 的 RGF 处理 48 和 72 小时。根据我们的结果,RGF 抑制细胞增殖,并随着暴露时间和浓度的增加而降低细胞内的 ATP 含量。在高剂量下还观察到线粒体膜电位丧失。在两种处理中,高剂量时线粒体融合/裂变基因和抗氧化剂 SOD2(超氧化物歧化酶)基因的表达水平增加。随着暴露时间和浓度的增加,线粒体 DNA 含量减少。此外,在 RGF 处理后,线粒体复合物 I 和 V 的蛋白表达水平降低,应激蛋白 HSP70 水平升高。在应用较高剂量时,通过透射电子显微镜观察到线粒体结构异常。我们的研究结果表明,RGF 诱导的心脏毒性可能与心肌细胞中线粒体损伤有关。