Institute of Bioengineering, Center for Neuroprosthetics, Center for Biomedical Imaging, EPFL, Geneva, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland.
The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia.
Comput Biol Med. 2021 Jun;133:104287. doi: 10.1016/j.compbiomed.2021.104287. Epub 2021 Mar 3.
Markup of generalized interictal epileptiform discharges (IEDs) on EEG is an important step in the diagnosis and characterization of epilepsy. However, manual EEG markup is a time-consuming, subjective, and the specialized task where the human reviewer needs to visually inspect a large amount of data to facilitate accurate clinical decisions. In this study, we aimed to develop a framework for automated detection of generalized paroxysmal fast activity (GPFA), a generalized IED seen in scalp EEG recordings of patients with the severe epilepsy of Lennox-Gastaut syndrome (LGS).
We studied 13 children with LGS who had GPFA events in their interictal EEG recordings. Time-frequency information derived from manually marked IEDs across multiple EEG channels was used to automatically detect similar events in each patient's interictal EEG. We validated true positives and false positives of the proposed spike detection approach using both standalone scalp EEG and simultaneous EEG-functional MRI (EEG-fMRI) recordings.
GPFA events displayed a consistent low-high frequency arrangement in the time-frequency domain. This 'bimodal' spectral feature was most prominent over frontal EEG channels. Our automatic detection approach using this feature identified EEG events with similar time-frequency properties to the manually marked GPFAs. Brain maps of EEG-fMRI signal change during these automatically detected IEDs were comparable to the EEG-fMRI brain maps derived from manual IED markup.
GPFA events have a characteristic bimodal time-frequency feature that can be automatically detected from scalp EEG recordings in patients with LGS. The validity of this time-frequency feature is demonstrated by EEG-fMRI analysis of automatically detected events, which recapitulates the brain maps we have previously shown to underlie generalized IEDs in LGS.
This study provides a novel methodology that enables a fast, automated, and objective inspection of generalized IEDs in LGS. The proposed framework may be extendable to a wider range of epilepsy syndromes in which monitoring the burden of epileptic activity can aid clinical decision-making and faster assessment of treatment response and estimation of future seizure risk.
对脑电图中的广义发作间期癫痫样放电(IED)进行标记是癫痫诊断和特征描述的重要步骤。然而,手动脑电图标记是一项耗时、主观的专门任务,需要人类审查员通过视觉检查大量数据,以促进准确的临床决策。在这项研究中,我们旨在开发一种框架,用于自动检测广泛性阵发性快活动(GPFA),这是一种在 Lennox-Gastaut 综合征(LGS)患者的头皮 EEG 记录中观察到的广泛性 IED。
我们研究了 13 名患有 LGS 的儿童,他们在发作间期的 EEG 记录中出现了 GPFA 事件。从多个 EEG 通道手动标记的 IED 中提取的时频信息用于自动检测每个患者发作间期 EEG 中的类似事件。我们使用单独的头皮 EEG 和同时的 EEG-功能磁共振成像(EEG-fMRI)记录验证了所提出的尖峰检测方法的真阳性和假阳性。
GPFA 事件在时频域中显示出一致的低-高频率排列。这种“双峰”光谱特征在前额 EEG 通道中最为明显。我们使用此特征的自动检测方法识别出具有类似时频特性的 EEG 事件,这些事件与手动标记的 GPFAs 相似。在这些自动检测到的 IED 期间,EEG-fMRI 信号变化的脑图与从手动 IED 标记得出的 EEG-fMRI 脑图相当。
GPFA 事件具有特征性的双峰时频特征,可以从 LGS 患者的头皮 EEG 记录中自动检测到。通过对自动检测到的事件进行 EEG-fMRI 分析,证明了这种时频特征的有效性,该分析再现了我们之前显示的 LGS 中广泛 IED 所依据的脑图。
这项研究提供了一种新的方法,可快速、自动和客观地检查 LGS 中的广义 IED。所提出的框架可能可扩展到更广泛的癫痫综合征,其中监测癫痫活动的负担可以帮助临床决策,并更快地评估治疗反应和估计未来的癫痫发作风险。