The University of York, Centre for Health Economics, Alcuin A Block, Heslington, York, YO10 5DD, UK.
IQVIA, 210 Pentonville Road, London, N1 9JY, UK.
BMC Med Res Methodol. 2021 May 22;21(1):107. doi: 10.1186/s12874-021-01292-z.
Sparse relative effectiveness evidence is a frequent problem in Health Technology Assessment (HTA). Where evidence directly pertaining to the decision problem is sparse, it may be feasible to expand the evidence-base to include studies that relate to the decision problem only indirectly: for instance, when there is no evidence on a comparator, evidence on other treatments of the same molecular class could be used; similarly, a decision on children may borrow-strength from evidence on adults. Usually, in HTA, such indirect evidence is either included by ignoring any differences ('lumping') or not included at all ('splitting'). However, a range of more sophisticated methods exists, primarily in the biostatistics literature. The objective of this study is to identify and classify the breadth of the available information-sharing methods.
Forwards and backwards citation-mining techniques were used on a set of seminal papers on the topic of information-sharing. Papers were included if they specified (network) meta-analytic methods for combining information from distinct populations, interventions, outcomes or study-designs.
Overall, 89 papers were included. A plethora of evidence synthesis methods have been used for information-sharing. Most papers (n=79) described methods that shared information on relative treatment effects. Amongst these, there was a strong emphasis on methods for information-sharing across multiple outcomes (n=42) and treatments (n=25), with fewer papers focusing on study-designs (n=23) or populations (n=8). We categorise and discuss the methods under four 'core' relationships of information-sharing: functional, exchangeability-based, prior-based and multivariate relationships, and explain the assumptions made within each of these core approaches.
This study highlights the range of information-sharing methods available. These methods often impose more moderate assumptions than lumping or splitting. Hence, the degree of information-sharing that they impose could potentially be considered more appropriate. Our identification of four 'core' methods of information-sharing allows for an improved understanding of the assumptions underpinning the different methods. Further research is required to understand how the methods differ in terms of the strength of sharing they impose and the implications of this for health care decisions.
稀疏的相对疗效证据是健康技术评估(HTA)中的常见问题。当直接与决策问题相关的证据稀疏时,可能需要扩展证据基础,以纳入仅间接与决策问题相关的研究:例如,当没有关于对照物的证据时,可以使用同一分子类别中其他治疗方法的证据;同样,针对儿童的决策可以借鉴成人的证据。通常,在 HTA 中,这种间接证据要么被忽略(合并),要么根本不被包括在内(拆分)。然而,在生物统计学文献中存在一系列更复杂的方法。本研究的目的是确定和分类可用的信息共享方法的广度。
使用一系列关于信息共享主题的开创性论文的前向和后向引文挖掘技术。如果论文指定了用于组合来自不同人群、干预措施、结局或研究设计的信息的(网络)荟萃分析方法,则将其包括在内。
总共纳入了 89 篇论文。已经使用了大量的证据综合方法进行信息共享。大多数论文(n=79)描述了用于共享相对治疗效果信息的方法。在这些方法中,有强烈的倾向于用于跨多个结局(n=42)和治疗(n=25)共享信息的方法,而较少的论文侧重于研究设计(n=23)或人群(n=8)。我们将这些方法归类并讨论为四个“核心”信息共享关系:功能关系、可交换性基础关系、先验基础关系和多变量关系,并解释了这些核心方法中的每一种方法所做出的假设。
本研究强调了可用的信息共享方法的范围。这些方法通常比合并或拆分施加更温和的假设。因此,它们施加的信息共享程度可能被认为更合适。我们对四种“核心”信息共享方法的识别,使得我们能够更好地理解不同方法所基于的假设。需要进一步研究来了解这些方法在它们施加的共享强度方面有何不同,以及这对医疗保健决策有何影响。