Suppr超能文献

针对存在报告偏倚的相关结局的贝叶斯混合治疗比较荟萃分析。

Bayesian mixed treatment comparisons meta-analysis for correlated outcomes subject to reporting bias.

作者信息

Liu Yulun, DeSantis Stacia M, Chen Yong

机构信息

Department of Biostatistics, The University of Texas Health Science Center Houston, Houston, Texas 77030, U.S.A.

Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, U.S.A.

出版信息

J R Stat Soc Ser C Appl Stat. 2018 Jan;67(1):127-144. doi: 10.1111/rssc.12220. Epub 2017 Mar 17.

Abstract

Many randomized controlled trials (RCTs) report more than one primary outcome. As a result, multivariate meta-analytic methods for the assimilation of treatment effects in systematic reviews of RCTs have received increasing attention in the literature. These methods show promise with respect to bias reduction and efficiency gain compared to univariate meta-analysis. However, most methods for multivariate meta-analysis have focused on pairwise treatment comparisons (i.e., when the number of treatments is two). Current methods for mixed treatment comparisons (MTC) meta-analysis (i.e., when the number of treatments is more than two) have focused on univariate or very recently, bivariate outcomes. To broaden their application, we propose a framework for MTC meta-analysis of multivariate (≥ 2) outcomes where the correlations among multivariate outcomes within- and between-studies are accounted for through copulas, and the joint modeling of multivariate random effects, respectively. We consider a Bayesian hierarchical model using Markov Chain Monte Carlo methods for estimation. An important feature of the proposed framework is that it allows for borrowing of information across correlated outcomes. We show via simulation that our approach reduces the impact of outcome reporting bias (ORB) in a variety of missing outcome scenarios. We apply the method to a systematic review of RCTs of pharmacological treatments for alcohol dependence, which tends to report multiple outcomes potentially subject to ORB.

摘要

许多随机对照试验(RCT)报告了不止一个主要结局。因此,在RCT的系统评价中用于合并治疗效果的多变量荟萃分析方法在文献中受到了越来越多的关注。与单变量荟萃分析相比,这些方法在减少偏差和提高效率方面显示出前景。然而,大多数多变量荟萃分析方法都集中在成对治疗比较上(即治疗数为两个时)。当前用于混合治疗比较(MTC)荟萃分析的方法(即治疗数超过两个时)集中在单变量或最近的双变量结局上。为了拓宽其应用范围,我们提出了一个用于多变量(≥2)结局的MTC荟萃分析框架,其中通过copulas分别考虑研究内和研究间多变量结局之间的相关性以及多变量随机效应的联合建模。我们考虑使用马尔可夫链蒙特卡罗方法进行估计的贝叶斯分层模型。所提出框架的一个重要特征是它允许跨相关结局借用信息。我们通过模拟表明,我们的方法在各种缺失结局情况下减少了结局报告偏差(ORB)的影响。我们将该方法应用于酒精依赖药物治疗RCT的系统评价,该评价倾向于报告多个可能受到ORB影响的结局。

相似文献

5
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
7
Multivariate network meta-analysis incorporating class effects.纳入类别效应的多变量网络荟萃分析。
BMC Med Res Methodol. 2020 Jul 8;20(1):184. doi: 10.1186/s12874-020-01025-8.

引用本文的文献

4
Classifying information-sharing methods.分类信息共享方法。
BMC Med Res Methodol. 2021 May 22;21(1):107. doi: 10.1186/s12874-021-01292-z.
7
Borrowing of strength from indirect evidence in 40 network meta-analyses.从 40 项网络荟萃分析中的间接证据中借力。
J Clin Epidemiol. 2019 Feb;106:41-49. doi: 10.1016/j.jclinepi.2018.10.007. Epub 2018 Oct 17.

本文引用的文献

1
Sensitivity analysis for publication bias in meta-analyses.Meta分析中发表偏倚的敏感性分析。
J R Stat Soc Ser C Appl Stat. 2020 Nov;69(5):1091-1119. doi: 10.1111/rssc.12440. Epub 2020 Aug 28.
6
Joint synthesis of multiple correlated outcomes in networks of interventions.干预网络中多个相关结局的联合合成
Biostatistics. 2015 Jan;16(1):84-97. doi: 10.1093/biostatistics/kxu030. Epub 2014 Jul 2.
9
Graphical tools for network meta-analysis in STATA.STATA 中的网络荟萃分析图形工具。
PLoS One. 2013 Oct 3;8(10):e76654. doi: 10.1371/journal.pone.0076654. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验