Suppr超能文献

DNF:一种用于识别基因调控网络重连驱动因素的差分网络流方法。

DNF: A differential network flow method to identify rewiring drivers for gene regulatory networks.

作者信息

Xie Jiang, Yang Fuzhang, Wang Jiao, Karikomi Mathew, Yin Yiting, Sun Jiamin, Wen Tieqiao, Nie Qing

机构信息

School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China.

Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China.

出版信息

Neurocomputing (Amst). 2020 Oct 14;410:202-210. doi: 10.1016/j.neucom.2020.05.028. Epub 2020 May 26.

Abstract

Differential network analysis has become an important approach in identifying driver genes in development and disease. However, most studies capture only local features of the underlying gene-regulatory network topology. These approaches are vulnerable to noise and other changes which mask driver-gene activity. Therefore, methods are urgently needed which can separate the impact of true regulatory elements from stochastic changes and downstream effects. We propose the differential network flow (DNF) method to identify key regulators of progression in development or disease. Given the network representation of consecutive biological states, DNF quantifies the essentiality of each node by differences in the distribution of network flow, which are capable of capturing comprehensive topological differences from local to global feature domains. DNF achieves more accurate driver-gene identification than other state-of-the-art methods when applied to four human datasets from The Cancer Genome Atlas and three single-cell RNA-seq datasets of murine neural and hematopoietic differentiation. Furthermore, we predict key regulators of crosstalk between separate networks underlying both neuronal differentiation and the progression of neurodegenerative disease, among which APP is predicted as a driver gene of neural stem cell differentiation. Our method is a new approach for quantifying the essentiality of genes across networks of different biological states.

摘要

差异网络分析已成为识别发育和疾病中驱动基因的重要方法。然而,大多数研究仅捕捉了潜在基因调控网络拓扑结构的局部特征。这些方法容易受到噪声和其他掩盖驱动基因活性的变化的影响。因此,迫切需要能够将真正调控元件的影响与随机变化和下游效应区分开来的方法。我们提出了差异网络流(DNF)方法来识别发育或疾病进展中的关键调节因子。给定连续生物状态的网络表示,DNF通过网络流分布的差异来量化每个节点的重要性,这能够捕捉从局部到全局特征域的全面拓扑差异。当应用于来自癌症基因组图谱的四个人类数据集以及小鼠神经和造血分化的三个单细胞RNA测序数据集时,DNF比其他现有方法能更准确地识别驱动基因。此外,我们预测了神经元分化和神经退行性疾病进展背后的不同网络之间串扰的关键调节因子,其中APP被预测为神经干细胞分化的驱动基因。我们的方法是一种量化不同生物状态网络中基因重要性的新方法。

相似文献

7
Time-Varying Differential Network Analysis for Revealing Network Rewiring over Cancer Progression.用于揭示癌症进展过程中网络重连的时变微分网络分析
IEEE/ACM Trans Comput Biol Bioinform. 2021 Jul-Aug;18(4):1632-1642. doi: 10.1109/TCBB.2019.2949039. Epub 2021 Aug 6.

引用本文的文献

本文引用的文献

3
Exploring intermediate cell states through the lens of single cells.通过单细胞视角探索中间细胞状态。
Curr Opin Syst Biol. 2018 Jun;9:32-41. doi: 10.1016/j.coisb.2018.02.009. Epub 2018 Mar 2.
5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验