Suppr超能文献

研究微束放射治疗的剂量学特征。

Investigating the Dosimetric Characteristics of Microbeam Radiation Treatment.

作者信息

Zabihzadeh Mansour, Rabiei Atefeh, Shahbazian Hojattollah, Razmjoo Sasan

机构信息

Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

出版信息

J Med Signals Sens. 2021 Jan 30;11(1):45-51. doi: 10.4103/jmss.JMSS_12_19. eCollection 2021 Jan-Mar.

Abstract

BACKGROUND

High-radiation therapeutic gain could be achieved by the modern technique of microbeam radiation treatment (MRT). The aim of this study was to investigate the dosimetric properties of MRT.

METHODS

The EGSnrc Monte Carlo (MC) code system was used to transport photons and electrons in MRT. The mono-energetic beams (1 cm × 1 cm array) of 50, 100, and 150 keV and the spectrum photon beam (European Synchrotron Radiation Facility [ESRF]) were modeled to transport through multislit collimators with the aperture's widths of 25 and 50 μm and the center-to-center (c-t-c) distance between two adjacent microbeams (MBs) of 200 μm. The calculated phase spaces at the upper surface of water phantom (1 cm × 1 cm) were implemented in DOSXYZnrc code to calculate the percentage depth dose (PDD), the dose profile curves (in depths of 0-1, 1-2, and 3-4 cm), and the peak-to-valley dose ratios (PVDRs).

RESULTS

The PDD, dose profile curves, and PVDRs were calculated for different effective parameters. The more flatness of lateral dose profile was obtained for the ESRF spectrum MB. With constant c-t-c distance, an increase in the MB size increased the peak and valley dose; simultaneously, the PVDR was larger for the 25 μm MB (33.5) compared to 50 μm MB (21.9) beam, due to the decreased scattering photons followed to the lower overlapping of the adjacent MBs. An increase in the depth decreased the PVDRs (i.e., 54.9 in depth of 0-1 cm).

CONCLUSION

Our MC model of MRT successfully calculated the effect of dosimetric parameters including photon's energy, beam width, and depth to estimate the dose distribution.

摘要

背景

微束放射治疗(MRT)这一现代技术能够实现高放射治疗增益。本研究的目的是探究MRT的剂量学特性。

方法

使用EGSnrc蒙特卡罗(MC)代码系统在MRT中传输光子和电子。对能量分别为50、100和150 keV的单能束(1 cm×1 cm阵列)以及光谱光子束(欧洲同步辐射装置[ESRF])进行建模,使其通过孔径宽度为25和50μm且相邻微束(MB)中心距(c-t-c)为200μm的多狭缝准直器传输。将水模体(1 cm×1 cm)上表面计算得到的相空间输入DOSXYZnrc代码,以计算百分深度剂量(PDD)、剂量剖面曲线(在0 - 1、1 - 2和3 - 4 cm深度处)以及峰谷剂量比(PVDR)。

结果

针对不同有效参数计算了PDD、剂量剖面曲线和PVDR。ESRF光谱微束的横向剂量剖面更平坦。在中心距恒定的情况下,微束尺寸增大,峰剂量和谷剂量增加;同时,25μm微束(33.5)的PVDR比50μm微束(21.9)的大,这是因为相邻微束重叠减少,散射光子减少。随着深度增加,PVDR降低(即0 - 1 cm深度处为54.9)。

结论

我们的MRT蒙特卡罗模型成功计算了包括光子能量、束宽和深度在内的剂量学参数对估计剂量分布的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb91/8043115/cbf039447c6d/JMSS-11-45-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验