Steiner Christian, Fromm Lukas, Gebhardt Julian, Liu Yi, Heidenreich Alexander, Hammer Natalie, Görling Andreas, Kivala Milan, Maier Sabine
Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
Nanoscale. 2021 Jun 3;13(21):9798-9807. doi: 10.1039/d0nr09140e.
The post-synthetic modification of covalent organic frameworks (COFs) via host-guest chemistry is an important method to tailor their electronic properties for applications. Due to the limited structural control in the assembly of two-dimensional surface-supported COFs, supramolecular networks are traditionally used at present for host-guest experiments on surfaces, which lack structural and thermal stability, however. Here, we present a combined scanning tunneling microscopy and density functional theory study to understand the host-guest interaction in triphenylamine-based covalently-linked macrocycles and networks on Au(111). These triphenylamine-based structures feature carbonyl and hydrogen functionalized pores that create preferred adsorption sites for trimesic acid (TMA) and halogen atoms. The binding of the TMA through optimized hydrogen-bond interactions is corroborated by selective adsorption positions within the pores. Band structure calculations reveal that the strong intermolecular charge transfer through the TMA bonding reduces the band gap in the triphenylamine COFs, demonstrating the concept of supramolecular doping by host-guest interactions in surface-supported COFs. Halogen atoms selectively adsorb between two carbonyl groups at Au hollow sites. The mainly dispersive interaction of the halogens with the triphenylamine COF leads to a small downshift of the bands. Most of the halogens change their adsorption position selectively upon annealing near the desorption temperature. In conclusion, we demonstrate evidence for supramolecular doping via post-synthetic modification and to track chemical reactions in confined space.
通过主客体化学对共价有机框架(COF)进行合成后修饰是一种调整其电子性质以用于应用的重要方法。由于二维表面支撑的COF组装过程中结构控制有限,目前传统上使用超分子网络进行表面主客体实验,然而,这些超分子网络缺乏结构和热稳定性。在此,我们进行了一项结合扫描隧道显微镜和密度泛函理论的研究,以了解基于三苯胺的共价连接大环和网络在Au(111)上的主客体相互作用。这些基于三苯胺的结构具有羰基和氢官能化的孔,这些孔为均苯三甲酸(TMA)和卤素原子创造了优先吸附位点。通过孔内的选择性吸附位置证实了TMA通过优化的氢键相互作用的结合。能带结构计算表明,通过TMA键合的强分子间电荷转移降低了三苯胺COF中的带隙,证明了表面支撑的COF中通过主客体相互作用进行超分子掺杂的概念。卤素原子选择性地吸附在Au空心位点的两个羰基之间。卤素与三苯胺COF的主要色散相互作用导致能带出现小的下移。大多数卤素在接近解吸温度退火时会选择性地改变其吸附位置。总之,我们展示了通过合成后修饰进行超分子掺杂以及追踪受限空间中化学反应的证据。