Suppr超能文献

水相中的多孔共价有机框架纳滤膜中的 C-H 键功能化:催化球蜕变的实例。

Heterogeneous C-H Functionalization in Water via Porous Covalent Organic Framework Nanofilms: A Case of Catalytic Sphere Transmutation.

机构信息

Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India.

Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India.

出版信息

J Am Chem Soc. 2021 Jun 9;143(22):8426-8436. doi: 10.1021/jacs.1c02425. Epub 2021 May 24.

Abstract

Heterogeneous catalysis in water has not been explored beyond certain advantages such as recyclability and recovery of the catalysts from the reaction medium. Moreover, poor yield, extremely low selectivity, and active catalytic site deactivation further underrate the heterogeneous catalysis in water. Considering these facts, we have designed and synthesized solution-dispersible porous covalent organic framework (COF) nanospheres. We have used their distinctive morphology and dispersibility to functionalize unactivated C-H bonds of alkanes heterogeneously with high catalytic yield (42-99%) and enhanced regio- and stereoselectivity (3°:2° = 105:1 for adamantane). Further, the fabrication of catalyst-immobilized COF nanofilms via covalent self-assembly of catalytic COF nanospheres for the first time has become the key toward converting the catalytically inactive homogeneous catalysts into active and effective heterogeneous catalysts operating in water. This unique covalent self-assembly occurs through the protrusion of the fibers at the interface of two nanospheres, transmuting the catalytic spheres into films without any leaching of catalyst molecules. The catalyst-immobilized porous COF nanofilms' chemical functionality and hydrophobic environment stabilize the high-valent transient active oxoiron(V) intermediate in water and restricts the active catalytic site's deactivation. These COF nanofilms functionalize the unactivated C-H bonds in water with a high catalytic yield (45-99%) and with a high degree of selectivity (: = 155:1; 3°:2° = 257:1, for -1,2-dimethylcyclohexane). To establish this approach's "practical implementation", we conducted the catalysis inflow (TON = 424 ± 5) using catalyst-immobilized COF nanofilms fabricated on a macroporous polymeric support.

摘要

水相多相催化的研究仅局限于某些优点,如催化剂可回收以及从反应介质中循环使用。此外,较差的收率、极低的选择性和活性催化位点失活进一步降低了水相多相催化的效率。考虑到这些事实,我们设计并合成了可溶液分散的多孔共价有机骨架(COF)纳米球。我们利用其独特的形态和分散性,实现了烷烃中非活性 C-H 键的异相功能化,具有较高的催化产率(42-99%)和增强的区域和立体选择性(金刚烷 3°:2° = 105:1)。此外,通过催化 COF 纳米球的共价自组装首次制备了催化剂固载 COF 纳滤膜,这是将非活性均相催化剂转化为在水中具有活性和高效的异相催化剂的关键。这种独特的共价自组装是通过两个纳米球界面处纤维的突出而发生的,将催化球体转化为无催化剂分子浸出的薄膜。催化剂固载的多孔 COF 纳滤膜的化学功能和疏水环境稳定了水中高价瞬态活性氧铁(V)中间物,并限制了活性催化位点的失活。这些 COF 纳滤膜在水中以较高的催化产率(45-99%)和高选择性(: = 155:1;3°:2° = 257:1,-1,2-二甲基环己烷)实现了非活性 C-H 键的功能化。为了建立这种方法的“实际应用”,我们使用固载在大孔聚合物载体上的催化剂固载 COF 纳滤膜进行了催化进料(TON = 424 ± 5)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验