Suppr超能文献

具有超致密刷状形态的超稳定玻璃态聚合物薄膜。

Ultrastable Glassy Polymer Films with an Ultradense Brush Morphology.

作者信息

Zuo Biao, Li Cheng, Xu Quanyin, Randazzo Katelyn, Jiang Naisheng, Wang Xinping, Priestley Rodney D

机构信息

Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States.

School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.

出版信息

ACS Nano. 2021 Jun 22;15(6):9568-9576. doi: 10.1021/acsnano.0c09631. Epub 2021 May 25.

Abstract

Glassy polymer films with extreme stability could enable major advancements in a range of fields that require the use of polymers in confined environments. Yet, from a materials design perspective, we now know that the glass transition temperature () and thermal expansion of polymer thin films can be dramatically different from those characteristics of the bulk, , exhibiting confinement-induced diminished thermal stability. Here, we demonstrate that polymer brushes with an ultrahigh grafting density, , an ultradense brush morphology, exhibit a significant enhancement in thermal stability, as manifested by an exceptionally high and low expansivity. For instance, a 5 nm thick polystyrene brush film exhibits an ∼75 K increase in and ∼90% reduction in expansivity compared to a spin-cast film of similar thickness. Our results establish how morphology can overcome confinement and interfacial effects in controlling thin-film material properties and how this can be achieved by the dense packing and molecular ordering in the amorphous state of ultradense brushes prepared by surface-initiated atom transfer radical polymerization in combination with a self-assembled monolayer of initiators.

摘要

具有极高稳定性的玻璃态聚合物薄膜能够在一系列需要在受限环境中使用聚合物的领域取得重大进展。然而,从材料设计的角度来看,我们现在知道聚合物薄膜的玻璃化转变温度(Tg)和热膨胀与本体材料的这些特性可能有很大不同,表现出受限诱导的热稳定性降低。在此,我们证明具有超高接枝密度(σ)、超致密刷状形态的聚合物刷表现出热稳定性的显著增强,表现为异常高的Tg和低膨胀率。例如,与类似厚度的旋涂膜相比,5纳米厚的聚苯乙烯刷膜的Tg增加约75K,膨胀率降低约90%。我们的结果确定了形态如何在控制薄膜材料性能方面克服受限和界面效应,以及如何通过表面引发的原子转移自由基聚合结合引发剂的自组装单分子层制备的超致密刷的非晶态中的密集堆积和分子有序来实现这一点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验