Suppr超能文献

与头颈部癌症侵袭和预后预测相关的面板生物标志物。

Panel biomarkers associated with cancer invasion and prognostic prediction for head-neck cancer.

机构信息

Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.

Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, 11031, Taiwan.

出版信息

Biomark Med. 2021 Aug;15(11):861-877. doi: 10.2217/bmm-2021-0213. Epub 2021 May 25.

Abstract

Cell invasion leading to metastasis is a major cause of treatment failure in head-neck cancers (HNCs). Identifying prognostic molecules associated with invasiveness is imperative for clinical applications. A systemic approach was used to globally survey invasion-related genes, including transcriptomic profiling, pathway analysis, data mining and prognostic assessment using TCGA-HNSC dataset. Six functional pathways and six hub molecules (LAMA3, LAMC2, THBS1, IGF1R, PDGFB and TGFβ1) were identified that significantly contributed to cell invasion, leading to poor survival in HNC patients. Combinations of multiple biomarkers substantially increased the probability of accurately predicting prognosis. Our six defined invasion-related molecules may be used as a panel signature in precision medicine for prognostic indicators or molecular therapeutic targets for HNC.

摘要

细胞侵袭导致转移是头颈部癌症(HNC)治疗失败的主要原因。确定与侵袭性相关的预后分子对于临床应用至关重要。本研究采用系统的方法对与侵袭性相关的基因进行了全面分析,包括转录组谱分析、通路分析、数据挖掘和使用 TCGA-HNSC 数据集进行预后评估。鉴定出六个功能途径和六个枢纽分子(LAMA3、LAMC2、THBS1、IGF1R、PDGFB 和 TGFβ1),这些分子显著促进细胞侵袭,导致 HNC 患者的生存不良。多种生物标志物的组合可显著提高准确预测预后的概率。我们定义的六个侵袭相关分子可作为头颈部癌症精准医学中的预后指标或分子治疗靶点的面板特征。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验