Suppr超能文献

重新审视基于图的应用的 2D 卷积神经网络。

Revisiting 2D Convolutional Neural Networks for Graph-Based Applications.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Jun;45(6):6909-6922. doi: 10.1109/TPAMI.2021.3083614. Epub 2023 May 5.

Abstract

Graph convolutional networks (GCNs) are widely used in graph-based applications such as graph classification and segmentation. However, current GCNs have limitations on implementation such as network architectures due to their irregular inputs. In contrast, convolutional neural networks (CNNs) are capable of extracting rich features from large-scale input data, but they do not support general graph inputs. To bridge the gap between GCNs and CNNs, in this paper we study the problem of how to effectively and efficiently map general graphs to 2D grids that CNNs can be directly applied to, while preserving graph topology as much as possible. We therefore propose two novel graph-to-grid mapping schemes, namely, graph-preserving grid layout (GPGL) and its extension Hierarchical GPGL (H-GPGL) for computational efficiency. We formulate the GPGL problem as integer programming and further propose an approximate yet efficient solver based on a penalized Kamada-Kawai method, a well-known optimization algorithm in 2D graph drawing. We propose a novel vertex separation penalty that encourages graph vertices to lay on the grid without any overlap. Along with this image representation, even extra 2D maxpooling layers contribute to the PointNet, a widely applied point-based neural network. We demonstrate the empirical success of GPGL on general graph classification with small graphs and H-GPGL on 3D point cloud segmentation with large graphs, based on 2D CNNs including VGG16, ResNet50 and multi-scale maxout (MSM) CNN.

摘要

图卷积网络 (GCN) 在基于图的应用中得到了广泛应用,如图分类和分割。然而,当前的 GCN 由于其不规则的输入,在网络架构等实现方面存在局限性。相比之下,卷积神经网络 (CNN) 能够从大规模输入数据中提取丰富的特征,但它们不支持通用图输入。为了弥合 GCN 和 CNN 之间的差距,我们研究了如何有效地将通用图映射到 CNN 可以直接应用的 2D 网格,同时尽可能保留图的拓扑结构的问题。因此,我们提出了两种新颖的图到网格的映射方案,即保留图拓扑的网格布局 (GPGL) 及其用于提高计算效率的扩展方案分层 GPGL (H-GPGL)。我们将 GPGL 问题形式化为整数规划,并进一步提出了一种基于惩罚的 Kamada-Kawai 方法的近似但有效的求解器,这是一种在 2D 图绘制中广泛应用的优化算法。我们提出了一种新颖的顶点分离惩罚,鼓励图顶点在网格上放置而不重叠。有了这种图像表示,甚至额外的 2D maxpooling 层也有助于广泛应用的基于点的神经网络 PointNet。我们基于包括 VGG16、ResNet50 和多尺度 maxout (MSM) CNN 在内的 2D CNN,在小型图的通用图分类和大型图的 3D 点云分割上展示了 GPGL 的成功经验,以及 H-GPGL。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验