Mishra Suraj, Wang Ya Xing, Wei Chuan Chuan, Chen Danny Z, Hu X Sharon
Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, United States.
Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
Front Med (Lausanne). 2021 Nov 8;8:750396. doi: 10.3389/fmed.2021.750396. eCollection 2021.
From diagnosing cardiovascular diseases to analyzing the progression of diabetic retinopathy, accurate retinal artery/vein (A/V) classification is critical. Promising approaches for A/V classification, ranging from conventional graph based methods to recent convolutional neural network (CNN) based models, have been known. However, the inability of traditional graph based methods to utilize deep hierarchical features extracted by CNNs and the limitations of current CNN based methods to incorporate vessel topology information hinder their effectiveness. In this paper, we propose a new CNN based framework, VTG-Net (vessel topology graph network), for retinal A/V classification by incorporating vessel topology information. VTG-Net exploits retinal vessel topology along with CNN features to improve A/V classification accuracy. Specifically, we transform vessel features extracted by CNN in the image domain into a graph representation preserving the vessel topology. Then by exploiting a graph convolutional network (GCN), we enable our model to learn both CNN features and vessel topological features simultaneously. The final predication is attained by fusing the CNN and GCN outputs. Using a publicly available AV-DRIVE dataset and an in-house dataset, we verify the high performance of our VTG-Net for retinal A/V classification over state-of-the-art methods (with ~2% improvement in accuracy on the AV-DRIVE dataset).
从诊断心血管疾病到分析糖尿病视网膜病变的进展,准确的视网膜动脉/静脉(A/V)分类至关重要。人们已经知道了一些有前景的A/V分类方法,从传统的基于图的方法到最近基于卷积神经网络(CNN)的模型。然而,传统的基于图的方法无法利用CNN提取的深度层次特征,以及当前基于CNN的方法在整合血管拓扑信息方面的局限性,阻碍了它们的有效性。在本文中,我们提出了一种新的基于CNN的框架VTG-Net(血管拓扑图网络),用于通过整合血管拓扑信息进行视网膜A/V分类。VTG-Net利用视网膜血管拓扑以及CNN特征来提高A/V分类准确率。具体来说,我们将在图像域中由CNN提取的血管特征转换为保留血管拓扑的图表示。然后,通过利用图卷积网络(GCN),使我们的模型能够同时学习CNN特征和血管拓扑特征。最终的预测是通过融合CNN和GCN的输出得到的。使用公开可用的AV-DRIVE数据集和内部数据集,我们验证了我们的VTG-Net在视网膜A/V分类方面相对于现有方法的高性能(在AV-DRIVE数据集上准确率提高了约2%)。