Suppr超能文献

多源精修迁移网络在域和类别不一致下的工业故障诊断。

Multisource-Refined Transfer Network for Industrial Fault Diagnosis Under Domain and Category Inconsistencies.

出版信息

IEEE Trans Cybern. 2022 Sep;52(9):9784-9796. doi: 10.1109/TCYB.2021.3067786. Epub 2022 Aug 18.

Abstract

Unsupervised cross-domain fault diagnosis has been actively researched in recent years. It learns transferable features that reduce distribution inconsistency between source and target domains without target supervision. Most of the existing cross-domain fault diagnosis approaches are developed based on the consistency assumption of the source and target fault category sets. This assumption, however, is generally challenged in practice, as different working conditions can have different fault category sets. To solve the fault diagnosis problem under both domain and category inconsistencies, a multisource-refined transfer network is proposed in this article. First, a multisource-domain-refined adversarial adaptation strategy is designed to reduce the refined categorywise distribution inconsistency within each source-target domain pair. It avoids the negative transfer trap caused by conventional global-domainwise-forced alignments. Then, a multiple classifier complementation module is developed by complementing and transferring the source classifiers to the target domain to leverage different diagnostic knowledge existing in various sources. Different classifiers are complemented by the similarity scores produced by the adaptation module, and the complemented smooth predictions are used to guide the refined adaptation. Thus, the refined adversarial adaptation and the classifier complementation can benefit from each other in the training stage, yielding target-faults-discriminative and domain-refined-indistinguishable feature representations. Extensive experiments on two cases demonstrate the superiority of the proposed method when domain and category inconsistencies coexist.

摘要

近年来,无监督跨域故障诊断受到了广泛关注。它学习可迁移特征,减少源域和目标域之间的分布不一致,而无需目标监督。大多数现有的跨域故障诊断方法都是基于源域和目标域故障类别集的一致性假设开发的。然而,这一假设在实际中通常会受到挑战,因为不同的工作条件可能具有不同的故障类别集。为了解决存在域和类别不一致的故障诊断问题,本文提出了一种多源细化迁移网络。首先,设计了一种多源域细化对抗适应策略,以减少每个源-目标域对中的细化类别分布不一致。它避免了传统的全局域强制对齐所导致的负迁移陷阱。然后,通过将源分类器补充和转移到目标域来开发多分类器补充模块,以利用各种源中存在的不同诊断知识。不同的分类器由适应模块生成的相似性得分来补充,补充后的平滑预测用于指导细化适应。因此,在训练阶段,细化对抗适应和分类器补充可以相互受益,从而产生目标故障区分和域细化不可区分的特征表示。在两个案例的广泛实验中,验证了所提出方法在存在域和类别不一致时的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验